Diagnosing shock temperature with NH$_3$ and H$_2$O profiles


Abstract in English

In a previous study of the L1157 B1 shocked cavity, a comparison between NH$_3$(1$_0$-$0_0$) and H$_2$O(1$_{rm 10}$--1$_{rm 01}$) transitions showed a striking difference in the profiles, with H$_2$O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed between NH$_3$ and H$_2$O is unique to L1157 or a common characteristic of chemically rich outflows, we have performed Herschel-HIFI observations of the NH$_3$(1$_0$-0$_0$) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H$_2$O(1$_{rm 10}$--1$_{rm 01}$) line within the WISH KP. We detected the ammonia emission at high-velocities at most of the outflows positions. In all cases, the water emission reaches higher velocities than NH$_3$, proving that this behaviour is not exclusive of the L1157-B1 position. Comparisons with a gas-grain chemical and shock model confirms, for this larger sample, that the behaviour of ammonia is determined principally by the temperature of the gas.

Download