Do you want to publish a course? Click here

Evidence for the magnetar nature of 1E 161348-5055 in RCW 103

66   0   0.0 ( 0 )
 Added by Antonino D'Ai
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the detection of a bright, short, structured X-ray burst coming from the supernova remnant RCW 103 on 2016 June 22 caught by the Swift/BAT monitor, and on the follow-up campaign made with Swift/XRT, Swift/UVOT and the optical/NIR GROND detector. The characteristics of this flash, such as duration, and spectral shape, are consistent with typical short bursts observed from soft gamma repeaters. The BAT error circle at 68 per cent confidence range encloses the point-like X-ray source at the centre of the nebula, 1E161348-5055. Its nature has been long debated due to a periodicity of 6.67 hr in X-rays, which could indicate either an extremely slow pulsating neutron star, or the orbital period of a very compact X-ray binary system. We found that 20 min before the BAT trigger, the soft X-ray emission of 1E161348-5055 was a factor of ~100 higher than measured 2 yr earlier, indicating that an outburst had already started. By comparing the spectral and timing characteristics of the source in the two years before the outburst and after the BAT event, we find that, besides a change in luminosity and spectral shape, also the 6.67 hr pulsed profile has significantly changed with a clear phase shift with respect to its low-flux profile. The UV/optical/NIR observations did not reveal any counterpart at the position of 1E161348-5055. Based on these findings, we associate the BAT burst with 1E161348-5055, we classify it as a magnetar, and pinpoint the 6.67 hr periodicity as the magnetar spin period.



rate research

Read More

144 - E. M. Reynoso 2003
We have carried out a study of the neutral hydrogen in the direction of the X-ray source 1E 161348-5055, a compact central object (CCO) located in the interior of the supernova remnant (SNR) RCW 103. The HI 21 cm line observations were carried out using the Australia Telescope Compact Array, complemented with single dish data from the Parkes radio telescope to recover information at all spatial scales. We derive a distance to RCW 103 of 3.3 kpc, in agreement with previous distance measurements. We have also detected a small hole in the HI emission which is positionally and kinematically coincident with the location of the CCO which confirms the association between the SNR and the CCO. This is the third case of a depression in HI emission seemingly associated with CCOs in SNRs. The characteristic parameters of the holes such as their size, eccentricity and evacuated mass are similar in all three cases. We estimate the absorbing HI column density towards 1E 161348-5055 to be ~6 x 10^{21} cm^{-2}, a value compatible with a blackbody solution for the CCO X-ray emission. However, the implied brightness temperature is very high comparedto most neutron stars. Moreover, the strong long-term variability in X-rays favours the hypothesis that 1E 161348-5055 is an accreting binary sourcerather than an isolated, cooling neutron star. An analysis of the continuum image obtained at 1.4 GHz from these observations shows no trace of a pulsar wind nebula around 1E 161348-5055, in spite of it being a young object.
We report on a new NuSTAR observation and on the ongoing Swift XRT monitoring campaign of the peculiar source 1E 161348-5055, located at the centre of the supernova remnant RCW 103, which is recovering from its last outburst in June 2016. The X-ray spectrum at the epoch of the NuSTAR observation can be described by either two absorbed blackbodies ($kT_{BB_1}$ ~ 0.5 keV, $kT_{BB_2}$ ~ 1.2 keV) or an absorbed blackbody plus a power law ($kT_{BB_1}$ ~ 0.6 keV, $Gamma$ ~ 3.9). The observed flux was ~ 9 $times$ 10$^{-12}$ erg s$^{-1}$ cm$^{-2}$, ~ 3 times lower than what observed at the outburst onset, but about one order of magnitude higher than the historical quiescent level. A periodic modulation was detected at the known 6.67 hr periodicity. The spectral decomposition and evolution along the outburst decay are consistent with 1E 161348-5055 being a magnetar, the slowest ever detected.
We observed the slowly revolving pulsar 1E 161348-5055 (1E 1613, spin period of 6.67 h) in the supernova remnant RCW 103 twice with XMM-Newton and once with the Very Large Telescope (VLT). The VLT observation was performed on 2016 June 30, about a week after the detection of a large outburst from 1E 1613. At the position of 1E 1613, we found a near-infrared source with K_S = 20.68 +/- 0.12 mag that was not detected (K_S > 21.2 mag) in data collected with the same instruments in 2006, during X-ray quiescence. Its position and behavior are consistent with a counterpart in the literature that was discovered with the Hubble Space Telescope in the following weeks in adjacent near-IR bands. The XMM-Newton pointings were carried out on 2016 August 19 and on 2018 February 14. While the collected spectra are similar in shape between each other and to what is observed in quiescence (a blackbody with kT~0.5 keV plus a second, harder component, either another hotter blackbody with kT ~ 1.2 keV or a power law with photon index ~3), the two pointings caught 1E 1613 at different luminosity throughout its decay pattern: about 4.8E34 erg/s in 2016 and 1.2E34 erg/s in 2018 (0.5-10 keV, for the double-blackbody model and for 3.3 kpc), which is still almost about ten times brighter than the quiescent level. The pulse profile displayed dramatic changes, apparently evolving from the complex multi-peak morphology observed in high-luminosity states to the more sinusoidal form characteristic of latency. The inspection of the X-ray light curves revealed two flares with unusual properties in the 2016 observation: they are long (~1 ks to be compared with 0.1-1 s of typical magnetar bursts) and faint (~1E34 erg/s, with respect to 1E38 erg/s or more in magnetars). Their spectra are comparatively soft and resemble the hotter thermal component of the persistent emission.
161 - Julia K. Vogel 2014
We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double-blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggests that an additional component, such as a power-law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.
On 2016 June 22, 2E 1613.5-5053, the puzzling central compact object in supernova remnant RCW 103, emitted a magnetar-like burst. Using Directors Discretionary Time, we observed 2E 1613.5-5053 with the Hubble Space Telescope (WFC3/IR) and we report here on the detection of a previously unseen infrared counterpart. In observations taken on 2016 July 4 and August 11, we detect a new source ($m_mathrm{F110W} = 26.3$ AB mag and $m_mathrm{F160W} = 24.2$ AB mag) at the Chandra position of 2E 1613.5-5053 which was not detected in HST/NICMOS images from 2002 August 15 and October 8 to a depth of 24.5 AB mag (F110W) and 25.5 AB mag (F160W). We show that these deep IR observations rule out the possibility of an accreting binary but mimic IR emission properties of magnetars and isolated neutron stars. The presence or absence of a low-mass fallback disk cannot be confirmed from our observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا