Do you want to publish a course? Click here

Functional Cliques in Developmentally Correlated Neural Networks

375   0   0.0 ( 0 )
 Publication date 2016
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We consider a sparse random network of excitatory leaky integrate-and-fire neurons with short-term synaptic depression. Furthermore to mimic the dynamics of a brain circuit in its first stages of development we introduce for each neuron correlations among in-degree and out-degree as well as among excitability and the corresponding total degree, We analyze the influence of single neuron stimulation and deletion on the collective dynamics of the network. We show the existence of a small group of neurons capable of controlling and even silencing the bursting activity of the network. These neurons form a functional clique since only their activation in a precise order and within specific time windows is capable to ignite population bursts.



rate research

Read More

It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate
Electrical stimulation of neural systems is a key tool for understanding neural dynamics and ultimately for developing clinical treatments. Many applications of electrical stimulation affect large populations of neurons. However, computational models of large networks of spiking neurons are inherently hard to simulate and analyze. We evaluate a reduced mean-field model of excitatory and inhibitory adaptive exponential integrate-and-fire (AdEx) neurons which can be used to efficiently study the effects of electrical stimulation on large neural populations. The rich dynamical properties of this basic cortical model are described in detail and validated using large network simulations. Bifurcation diagrams reflecting the networks state reveal asynchronous up- and down-states, bistable regimes, and oscillatory regions corresponding to fast excitation-inhibition and slow excitation-adaptation feedback loops. The biophysical parameters of the AdEx neuron can be coupled to an electric field with realistic field strengths which then can be propagated up to the population description.We show how on the edge of bifurcation, direct electrical inputs cause network state transitions, such as turning on and off oscillations of the population rate. Oscillatory input can frequency-entrain and phase-lock endogenous oscillations. Relatively weak electric field strengths on the order of 1 V/m are able to produce these effects, indicating that field effects are strongly amplified in the network. The effects of time-varying external stimulation are well-predicted by the mean-field model, further underpinning the utility of low-dimensional neural mass models.
We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing dependent plasticity (STDP). We find that, after learning, the spontaneous dynamics of the network replay one of the stored dynamical patterns, depending on the network initialization. We study the network capacity as a function of topology, and find that a small- world-like topology may be optimal, as a compromise between the high wiring cost of long range connections and the capacity increase.
In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reactivation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neurons death). However, the random pruning of the connections is able to reverse the action of inhibition, i.e. in a sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of the neurons (neurons rebirth). Thus the number of firing neurons reveals a minimum at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by the neurons with higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving an analytic mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, the system passes from a perfectly regular evolution to an irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.
The theory of communication through coherence (CTC) proposes that brain oscillations reflect changes in the excitability of neurons, and therefore the successful communication between two oscillating neural populations depends not only on the strength of the signal emitted but also on the relative phases between them. More precisely, effective communication occurs when the emitting and receiving populations are properly phase locked so the inputs sent by the emitting population arrive at the phases of maximal excitability of the receiving population. To study this setting, we consider a population rate model consisting of excitatory and inhibitory cells modelling the receiving population, and we perturb it with a time-dependent periodic function modelling the input from the emitting population. We consider the stroboscopic map for this system and compute numerically the fixed and periodic points of this map and their bifurcations as the amplitude and the frequency of the perturbation are varied. From the bifurcation diagram, we identify the phase-locked states as well as different regions of bistability. We explore carefully the dynamics emphasizing its implications for the CTC theory. In particular, we study how the input gain depends on the timing between the input and the inhibitory action of the receiving population. Our results show that naturally an optimal phase locking for CTC emerges, and provide a mechanism by which the receiving population can implement selective communication. Moreover, the presence of bistable regions, suggests a mechanism by which different communication regimes between brain areas can be established without changing the structure of the network
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا