Do you want to publish a course? Click here

Multidimensional Plasma Wake Excitation in the Non-linear Blowout Regime

168   0   0.0 ( 0 )
 Added by Jorge Vieira
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasma accelerators can sustain very high acceleration gradients. They are promising candidates for future generations of particle accelerators for several scientific, medical and technological applications. Current plasma based acceleration experiments operate in the relativistic regime, where the plasma response is strongly non-linear. We outline some of the key properties of wakefield excitation in these regimes. We outline a multidimensional theory for the excitation of plasma wakefields in connection with current experiments. We then use these results and provide design guidelines for the choice of laser and plasma parameters ensuring a stable laser wakefield accelerator that maximizes the quality of the accelerated electrons. We also mention some of the future challenges associated with this technology.

rate research

Read More

64 - David Tsiklauri 2018
Three dimensional particle in cell simulations are used for studying proton driven plasma wake-field acceleration that uses a high-energy proton bunch to drive a plasma wake-field for electron beam acceleration. A new parameter regime was found which generates essentially constant electric field that is three orders magnitudes larger than that of AWAKE design, i.e. of the order of $2 times 10^{3}$ GV/m. This is achieved in the the extreme blowout regime, when number density of the driving proton bunch exceeds plasma electron number density 100 times.
Using 2d3v code LCODE, the numerical simulation of nonlinear wakefield excitation in plasma by shaped relativistic electron bunch with charge distribution, which increases according to Gaussian charge distribution up to the maximum value, and then decreases sharply to zero, has been performed. Transformer ratio, as the ratio of the maximum accelerating field to the maximum decelerating field inside the bunch, and accelerating the wakefield have been investigated taking into account nonlinearity of the wakefield. The dependence of the transformer ratio and the maximum accelerating field on the length of the bunch was investigated with a constant charge of the bunch. It was taken into account that the length of the nonlinear wakefield increases with increasing length of the bunch. It is shown that the transformer ratio reaches its maximum value for a certain length of the bunch. The maximum value of the transformer ratio reaches six as due to the profiling of the bunch, and due to the non-linearity of the wakefield.
124 - David Tsiklauri 2017
In some laboratory and most astrophysical situations plasma wake-field acceleration of electrons is one dimensional, i.e. variation transverse to the beams motion can be ignored. Thus, one dimensional (1D), particle-in-cell (PIC), fully electromagnetic simulations of electron plasma wake field acceleration are conducted in order to study the differences in electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes. First, we show that caution needs to be taken when using fluid simulations, as PIC simulations prove that an approximation for an electron bunch not to evolve in time for few hundred plasma periods only applies when it is sufficiently relativistic. This conclusion is true irrespective of the plasma temperature. We find that in the linear regime and GeV energies, the accelerating electric field generated by the plasma wake is similar to the linear and MeV regime. However, because GeV energy driving bunch stays intact for much longer time, the final acceleration energies are much larger in the GeV energies case. In the GeV energy range and blowout regime the wakes accelerating electric field is much larger in amplitude compared to the linear case and also plasma wake geometrical size is much larger. Thus, the correct positioning of the trailing bunch is needed to achieve the efficient acceleration. For the considered case, optimally there should be approximately $(90-100) c/omega_{pe}$ distance between trailing and driving electron bunches in the GeV blowout regime.
A modified version of the Plasma Beat-Wave Accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, namely relativistic detuning and nonlinear modulation or other non-uniformity or non-stationarity in the driven Langmuir wave amplitude, and sensitivity to frequency mismatch due to measurement uncertainties and density fluctuations and inhomogeneities.
We explore a regime of laser-driven plasma acceleration of electrons where the radial envelope of the laser-pulse incident at the plasma entrance is strongly mismatched to the nonlinear plasma electron response excited by it. This regime has been experimentally studied with the gemini laser using f/40 focusing optics in August 2015 and f/20 in 2008. The physical mechanisms and the scaling laws of electron acceleration achievable in a laser-plasma accelerator have been studied in the radially matched laser regime and thus are not accurate in the strongly mismatched regime explored here. In this work, we show that a novel adjusted-a0 model applicable over a specific range of densities where the laser enters the state of a strong optical shock, describes the mismatched regime. Beside several novel aspects of laser-plasma interaction dynamics relating to an elongating bubble shape and the corresponding self-injection mechanism, importantly we find that in this strongly mismatched regime when the laser pulse transforms into an optical shock it is possible to achieve beam-energies that significantly exceed the incident intensity matched regime scaling laws.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا