No Arabic abstract
We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture 3N forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper $p$ and $sd$ shells. Finally, we address the $1^+$/$3^+$ ground-state inversion problem in $^{22}text{Na}$ and $^{46}text{V}$. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.
The nuclear rainbow observed in the elastic $alpha$-nucleus and light heavy-ion scattering is proven to be due to the refraction of the scattering wave by a deep, attractive real optical potential. The nuclear rainbow pattern, established as a broad oscillation of the Airy minima in the elastic cross section, originates from an interference of the refracted far-side scattering amplitudes. It is natural to expect a similar rainbow pattern also in the inelastic scattering of a nucleus-nucleus system that exhibits a pronounced rainbow pattern in the elastic channel. Although some feature of the nuclear rainbow in the inelastic nucleus-nucleus scattering was observed in experiment, the measured inelastic cross sections exhibit much weaker rainbow pattern, where the Airy oscillation is suppressed and smeared out. To investigate this effect, a novel method of the near-far decomposition of the inelastic scattering amplitude is proposed to explicitly reveal the coupled partial-wave contributions to the inelastic cross section. Using the new decomposition method, our coupled channel analysis of the elastic and inelastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies shows unambiguously that the suppression of the nuclear rainbow pattern in the inelastic scattering cross section is caused by a destructive interference of the partial waves of different multipoles. However, the inelastic scattering remains strongly refractive in these cases, where the far-side scattering is dominant at medium and large angles like that observed in the elastic scattering.
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known. We present microscopic nuclear structure physics calculations of charge and weak nuclear form factors and CE$ u$NS cross sections on $^{12}$C, $^{16}$O, $^{40}$Ar, $^{56}$Fe and $^{208}$Pb nuclei. We obtain the proton and neutron densities, and charge and weak form factors by solving Hartree-Fock equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing $^{208}$Pb and $^{40}$Ar charge form factor predictions with elastic electron scattering data. In view of the worldwide interest in liquid-argon based neutrino and dark matter experiments, we pay special attention to the $^{40}$Ar nucleus and make predictions for the $^{40}$Ar weak form factor and the CE$ u$NS cross sections. Furthermore, we attempt to gauge the level of theoretical uncertainty pertaining to the description of the $^{40}$Ar form factor and CE$ u$NS cross sections by comparing relative differences between recent microscopic nuclear theory and widely-used phenomenological form factor predictions. Future precision measurements of CE$ u$NS will potentially help in constraining these nuclear structure details that will in turn improve prospects of extracting new physics.
Large-angle elastic scattering of alpha-particle and strongly-bound light nuclei at a few tens MeV/nucleon has shown the pattern of rainbow scattering. This interesting process was shown to involve a significant overlap of the two colliding nuclei, with the total nuclear density well above the saturation density of normal nuclear matter (NM). For a microscopic calculation of the nucleus-nucleus potential within the folding model, we have developed a density dependent nucleon-nucleon (NN) interaction based on the G-matrix interaction M3Y. Our folding analysis of the refractive 4He, 12C, and 16O elastic scattering shows consistently that the NM incompressibility K should be around 250 MeV which implies a rather soft nuclear Equation of State (EOS). To probe the symmetry part of the nuclear EOS, we have used the isovector coupling to link the isospin dependence of the proton optical potential to the cross section of (p,n) charge-exchange reactions exciting the isobaric analog states in nuclei of different mass regions. With the isospin dependence of the NN interaction fine tuned to reproduce the charge exchange data, a realistic estimate of the NM symmetry energy has been made.
Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nuclear reactions. As the first step, mean-field evolution for the density matrix for colliding slabs is studied in one dimension. The strategy to extend the dynamics to correlations is described.
Nuclear surface provides useful information on nuclear radius, nuclear structure as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.