Do you want to publish a course? Click here

Semiparametric Estimation with Data Missing Not at Random Using an Instrumental Variable

90   0   0.0 ( 0 )
 Added by BaoLuo Sun
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Missing data occur frequently in empirical studies in health and social sciences, often compromising our ability to make accurate inferences. An outcome is said to be missing not at random (MNAR) if, conditional on the observed variables, the missing data mechanism still depends on the unobserved outcome. In such settings, identification is generally not possible without imposing additional assumptions. Identification is sometimes possible, however, if an instrumental variable (IV) is observed for all subjects which satisfies the exclusion restriction that the IV affects the missingness process without directly influencing the outcome. In this paper, we provide necessary and sufficient conditions for nonparametric identification of the full data distribution under MNAR with the aid of an IV. In addition, we give sufficient identification conditions that are more straightforward to verify in practice. For inference, we focus on estimation of a population outcome mean, for which we develop a suite of semiparametric estimators that extend methods previously developed for data missing at random. Specifically, we propose inverse probability weighted estimation, outcome regression-based estimation and doubly robust estimation of the mean of an outcome subject to MNAR. For illustration, the methods are used to account for selection bias induced by HIV testing refusal in the evaluation of HIV seroprevalence in Mochudi, Botswana, using interviewer characteristics such as gender, age and years of experience as IVs.



rate research

Read More

Practical problems with missing data are common, and statistical methods have been developed concerning the validity and/or efficiency of statistical procedures. On a central focus, there have been longstanding interests on the mechanism governing data missingness, and correctly deciding the appropriate mechanism is crucially relevant for conducting proper practical investigations. The conventional notions include the three common potential classes -- missing completely at random, missing at random, and missing not at random. In this paper, we present a new hypothesis testing approach for deciding between missing at random and missing not at random. Since the potential alternatives of missing at random are broad, we focus our investigation on a general class of models with instrumental variables for data missing not at random. Our setting is broadly applicable, thanks to that the model concerning the missing data is nonparametric, requiring no explicit model specification for the data missingness. The foundational idea is to develop appropriate discrepancy measures between estimators whose properties significantly differ only when missing at random does not hold. We show that our new hypothesis testing approach achieves an objective data oriented choice between missing at random or not. We demonstrate the feasibility, validity, and efficacy of the new test by theoretical analysis, simulation studies, and a real data analysis.
We study the identification and estimation of statistical functionals of multivariate data missing non-monotonically and not-at-random, taking a semiparametric approach. Specifically, we assume that the missingness mechanism satisfies what has been previously called no self-censoring or itemwise conditionally independent nonresponse, which roughly corresponds to the assumption that no partially-observed variable directly determines its own missingness status. We show that this assumption, combined with an odds ratio parameterization of the joint density, enables identification of functionals of interest, and we establish the semiparametric efficiency bound for the nonparametric model satisfying this assumption. We propose a practical augmented inverse probability weighted estimator, and in the setting with a (possibly high-dimensional) always-observed subset of covariates, our proposed estimator enjoys a certain double-robustness property. We explore the performance of our estimator with simulation experiments and on a previously-studied data set of HIV-positive mothers in Botswana.
Classical semiparametric inference with missing outcome data is not robust to contamination of the observed data and a single observation can have arbitrarily large influence on estimation of a parameter of interest. This sensitivity is exacerbated when inverse probability weighting methods are used, which may overweight contaminated observations. We introduce inverse probability weighted, double robust and outcome regression estimators of location and scale parameters, which are robust to contamination in the sense that their influence function is bounded. We give asymptotic properties and study finite sample behaviour. Our simulated experiments show that contamination can be more serious a threat to the quality of inference than model misspecification. An interesting aspect of our results is that the auxiliary outcome model used to adjust for ignorable missingness by some of the estimators, is also useful to protect against contamination. We also illustrate through a case study how both adjustment to ignorable missingness and protection against contamination are achieved through weighting schemes, which can be contrasted to gain further insights.
89 - Aude Sportisse 2018
Missing values challenge data analysis because many supervised and unsupervised learning methods cannot be applied directly to incomplete data. Matrix completion based on low-rank assumptions are very powerful solution for dealing with missing values. However, existing methods do not consider the case of informative missing values which are widely encountered in practice. This paper proposes matrix completion methods to recover Missing Not At Random (MNAR) data. Our first contribution is to suggest a model-based estimation strategy by modelling the missing mechanism distribution. An EM algorithm is then implemented, involving a Fast Iterative Soft-Thresholding Algorithm (FISTA). Our second contribution is to suggest a computationally efficient surrogate estimation by implicitly taking into account the joint distribution of the data and the missing mechanism: the data matrix is concatenated with the mask coding for the missing values; a low-rank structure for exponential family is assumed on this new matrix, in order to encode links between variables and missing mechanisms. The methodology that has the great advantage of handling different missing value mechanisms is robust to model specification errors.The performances of our methods are assessed on the real data collected from a trauma registry (TraumaBase ) containing clinical information about over twenty thousand severely traumatized patients in France. The aim is then to predict if the doctors should administrate tranexomic acid to patients with traumatic brain injury, that would limit excessive bleeding.
When a missing process depends on the missing values themselves, it needs to be explicitly modelled and taken into account while doing likelihood-based inference. We present an approach for building and fitting deep latent variable models (DLVMs) in cases where the missing process is dependent on the missing data. Specifically, a deep neural network enables us to flexibly model the conditional distribution of the missingness pattern given the data. This allows for incorporating prior information about the type of missingness (e.g. self-censoring) into the model. Our inference technique, based on importance-weighted variational inference, involves maximising a lower bound of the joint likelihood. Stochastic gradients of the bound are obtained by using the reparameterisation trick both in latent space and data space. We show on various kinds of data sets and missingness patterns that explicitly modelling the missing process can be invaluable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا