No Arabic abstract
We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, the normalised growth rate $f(z)sigma_8(z)$, and the physical matter density $Omega_mh^2$. We adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe galaxy clustering analysis. We also marginalise over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis. We obtain ${D_A(z)r_{s,fid}/r_s$Mpc, $H(z)r_s/r_{s,fid}$kms$^{-1}$Mpc$^{-1}$, $f(z)sigma_8(z)$, $Omega_m h^2}$ = ${956pm28$ , $75.0pm4.0$ , $0.397 pm 0.073$, $0.143pm0.017}$ at $z=0.32$ and ${1421pm23$, $96.7pm2.7$ , $0.497 pm 0.058$, $0.137pm0.015}$ at $z=0.59$ where $r_s$ is the comoving sound horizon at the drag epoch and $r_{s,fid}=147.66$Mpc for the fiducial cosmology in this study. In addition, we divide the galaxy sample into four redshift bins to increase the sensitivity of redshift evolution. However, we do not find improvements in terms of constraining dark energy model parameters. Combining our measurements with Planck data, we obtain $Omega_m=0.306pm0.009$, $H_0=67.9pm0.7$kms$^{-1}$Mpc$^{-1}$, and $sigma_8=0.815pm0.009$ assuming $Lambda$CDM; $Omega_k=0.000pm0.003$ assuming oCDM; $w=-1.01pm0.06$ assuming $w$CDM; and $w_0=-0.95pm0.22$ and $w_a=-0.22pm0.63$ assuming $w_0w_a$CDM. Our results show no tension with the flat $Lambda$CDM cosmological paradigm. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 $h^{-1}$Mpc). We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift $z=0.59$, to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, the normalized growth rate $f(z)sigma_8(z)$, and the physical matter density $Omega_mh^2$. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g., ones induced by stars and seeing. We provide accurate measurements ${D_A(0.59)r_{s,fid}/r_s$ $rm Mpc$, $H(0.59)r_s/r_{s,fid}$ $km s^{-1} Mpc^{-1}$, $f(0.59)sigma_8(0.59)$, $Omega_m h^2}$ = ${1427pm26$, $97.3pm3.3$, $0.488 pm 0.060$, $0.135pm0.016}$, where $r_s$ is the comoving sound horizon at the drag epoch and $r_{s,fid}=147.66$ Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g., cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e., CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, $w$, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, $Omega_k$, is 0.3 per cent. We do not find deviation from flat $Lambda$CDM.
We develop a new methodology called double-probe analysis with the aim of minimizing informative priors in the estimation of cosmological parameters. We extract the dark-energy-model-independent cosmological constraints from the joint data sets of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurement. We measure the mean values and covariance matrix of ${R$, $l_a$, $Omega_b h^2$, $n_s$, $log(A_s)$, $Omega_k$, $H(z)$, $D_A(z)$, $f(z)sigma_8(z)}$, which give an efficient summary of Planck data and 2-point statistics from BOSS galaxy sample, where $R=sqrt{Omega_m H_0^2},r(z_*)$, and $l_a=pi r(z_*)/r_s(z_*)$, $z_*$ is the redshift at the last scattering surface, and $r(z_*)$ and $r_s(z_*)$ denote our comoving distance to $z_*$ and sound horizon at $z_*$ respectively. The advantage of this method is that we do not need to put informative priors on the cosmological parameters that galaxy clustering is not able to constrain well, i.e. $Omega_b h^2$ and $n_s$. Using our double-probe results, we obtain $Omega_m=0.304pm0.009$, $H_0=68.2pm0.7$, and $sigma_8=0.806pm0.014$ assuming $Lambda$CDM; and $Omega_k=0.002pm0.003$ and $w=-1.00pm0.07$ assuming o$w$CDM. The results show no tension with the flat $Lambda$CDM cosmological paradigm. By comparing with the full-likelihood analyses with fixed dark energy models, we demonstrate that the double-probe method provides robust cosmological parameter constraints which can be conveniently used to study dark energy models. We extend our study to measure the sum of neutrino mass and obtain $Sigma m_ u<0.10/0.22$ (68%/95%) assuming $Lambda$CDM and $Sigma m_ u<0.26/0.52$ (68%/95%) assuming $w$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.
We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by f{sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature {Omega}_K =0.0003+/-0.0026 and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant ({Lambda}CDM). Our RSD measurements of f{sigma}_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat {Lambda}CDM we find {Omega}_m = 0.310+/-0.005 and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of 0.16 eV/c^2 on the neutrino mass sum.
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample, which consists of $1,198,006$ galaxies in the redshift range $0.2 < z < 0.75$ and a sky coverage of $10,252,$deg$^2$. We analyse this dataset in Fourier space, using the power spectrum multipoles to measure Redshift-Space Distortions (RSD) simultaneously with the Alcock-Paczynski (AP) effect and the Baryon Acoustic Oscillation (BAO) scale. We include the power spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation theory based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline we participate in a mock challenge, which resulted in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on $fsigma_8$ at $z_{rm eff}=0.61$ indicates a small ($sim 1.4sigma$) deviation from the prediction of the Planck $Lambda$CDM model, the low-redshift constraint is in good agreement with Planck $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1,198,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6%$ and $1.5%$ constraints on $D_A(z)$ and $2.9%$ and $2.3%$ constraints on $H(z)$ for the low ($zeff=0.38$) and high ($zeff=0.61$) redshift bin, respectively. We obtain two independent $1%$ and $0.9%$ constraints on the angular averaged distance $D_V(z)$, when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of $8sigma$ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.