Do you want to publish a course? Click here

MAGIC: a general, powerful and tractable method for selective inference

138   0   0.0 ( 0 )
 Added by Xiaoying Tian
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Selective inference is a recent research topic that tries to perform valid inference after using the data to select a reasonable statistical model. We propose MAGIC, a new method for selective inference that is general, powerful and tractable. MAGIC is a method for selective inference after solving a convex optimization problem with smooth loss and $ell_1$ penalty. Randomization is incorporated into the optimization problem to boost statistical power. Through reparametrization, MAGIC reduces the problem into a sampling problem with simple constraints. MAGIC applies to many $ell_1$ penalized optimization problem including the Lasso, logistic Lasso and neighborhood selection in graphical models, all of which we consider in this paper.



rate research

Read More

Inspired by sample splitting and the reusable holdout introduced in the field of differential privacy, we consider selective inference with a randomized response. We discuss two major advantages of using a randomized response for model selection. First, the selectively valid tests are more powerful after randomized selection. Second, it allows consistent estimation and weak convergence of selective inference procedures. Under independent sampling, we prove a selective (or privatized) central limit theorem that transfers procedures valid under asymptotic normality without selection to their corresponding selective counterparts. This allows selective inference in nonparametric settings. Finally, we propose a framework of inference after combining multiple randomized selection procedures. We focus on the classical asymptotic setting, leaving the interesting high-dimensional asymptotic questions for future work.
Covariance matrix testing for high dimensional data is a fundamental problem. A large class of covariance test statistics based on certain averaged spectral statistics of the sample covariance matrix are known to obey central limit theorems under the null. However, precise understanding for the power behavior of the corresponding tests under general alternatives remains largely unknown. This paper develops a general method for analyzing the power behavior of covariance test statistics via accurate non-asymptotic power expansions. We specialize our general method to two prototypical settings of testing identity and sphericity, and derive sharp power expansion for a number of widely used tests, including the likelihood ratio tests, Ledoit-Nagao-Wolfs test, Cai-Mas test and Johns test. The power expansion for each of those tests holds uniformly over all possible alternatives under mild growth conditions on the dimension-to-sample ratio. Interestingly, although some of those tests are previously known to share the same limiting power behavior under spiked covariance alternatives with a fixed number of spikes, our new power characterizations indicate that such equivalence fails when many spikes exist. The proofs of our results combine techniques from Poincare-type inequalities, random matrices and zonal polynomials.
We propose statistical inferential procedures for panel data models with interactive fixed effects in a kernel ridge regression framework.Compared with traditional sieve methods, our method is automatic in the sense that it does not require the choice of basis functions and truncation parameters.Model complexity is controlled by a continuous regularization parameter which can be automatically selected by generalized cross validation. Based on empirical processes theory and functional analysis tools, we derive joint asymptotic distributions for the estimators in the heterogeneous setting. These joint asymptotic results are then used to construct confidence intervals for the regression means and prediction intervals for the future observations, both being the first provably valid intervals in literature. Marginal asymptotic normality of the functional estimators in homogeneous setting is also obtained. Simulation and real data analysis demonstrate the advantages of our method.
Conditional selective inference (SI) has been actively studied as a new statistical inference framework for data-driven hypotheses. The basic idea of conditional SI is to make inferences conditional on the selection event characterized by a set of linear and/or quadratic inequalities. Conditional SI has been mainly studied in the context of feature selection such as stepwise feature selection (SFS). The main limitation of the existing conditional SI methods is the loss of power due to over-conditioning, which is required for computational tractability. In this study, we develop a more powerful and general conditional SI method for SFS using the homotopy method which enables us to overcome this limitation. The homotopy-based SI is especially effective for more complicated feature selection algorithms. As an example, we develop a conditional SI method for forward-backward SFS with AIC-based stopping criteria and show that it is not adversely affected by the increased complexity of the algorithm. We conduct several experiments to demonstrate the effectiveness and efficiency of the proposed method.
We consider the problem of selective inference after solving a (randomized) convex statistical learning program in the form of a penalized or constrained loss function. Our first main result is a change-of-measure formula that describes many conditional sampling problems of interest in selective inference. Our approach is model-agnostic in the sense that users may provide their own statistical model for inference, we simply provide the modification of each distribution in the model after the selection. Our second main result describes the geometric structure in the Jacobian appearing in the change of measure, drawing connections to curvature measures appearing in Weyl-Steiner volume-of-tubes formulae. This Jacobian is necessary for problems in which the convex penalty is not polyhedral, with the prototypical example being group LASSO or the nuclear norm. We derive explicit formulae for the Jacobian of the group LASSO. To illustrate the generality of our method, we consider many examples throughout, varying both the penalty or constraint in the statistical learning problem as well as the loss function, also considering selective inference after solving multiple statistical learning programs. Penalties considered include LASSO, forward stepwise, stagewise algorithms, marginal screening and generalized LASSO. Loss functions considered include squared-error, logistic, and log-det for covariance matrix estimation. Having described the appropriate distribution we wish to sample from through our first two results, we outline a framework for sampling using a projected Langevin sampler in the (commonly occuring) case that the distribution is log-concave.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا