Do you want to publish a course? Click here

Relativistic electrons produced by foreshock disturbances

101   0   0.0 ( 0 )
 Added by Lynn Wilson III
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Foreshock disturbances -- large-scale (~1000 km to >30,000 km), transient (~5-10 per day - lasting ~10s of seconds to several minutes) structures [1,2] - generated by suprathermal (>100 eV to 100s of keV) ions [3,4] arise upstream of Earths bow shock formed by the solar wind colliding with the Earths magnetosphere. They have recently been found to accelerate ions to energies of several keV [5,6]. Although electrons in Saturns high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV) [7], it has hitherto been thought impossible to accelerate electrons at the much weaker (M < 20) Earths bow shock beyond a few 10s of keV [8]. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ~300 keV. Although such energetic electrons have been previously reported, their presence has been attributed to escaping magnetospheric particles [9,10] or solar events [11]. These relativistic electrons are not associated with any solar activity nor are they of magnetospheric origin. Further, current theories of ion acceleration in foreshock disturbances cannot account for electrons accelerated to the observed relativistic energies [12-17]. These electrons are clearly coming from the disturbances, leaving us with no explanation as to their origin.



rate research

Read More

Based on global hybrid simulation results, we predict that foreshock turbulence can reach the magnetopause and lead to reconnection as well as Earth-sized indents. Both the interplanetary magnetic field (IMF) and solar wind are constant in our simulation, and hence all dynamics are generated by foreshock instabilities. The IMF in the simulation is mostly Sun-Earth aligned with a weak northward and zero dawn-dusk component, such that subsolar magnetopause reconnection is not expected without foreshock turbulence modifying the magnetosheath fields. We show a reconnection example to illustrate that the turbulence can create large magnetic shear angles across the magnetopause to induce local bursty reconnection. Magnetopause reconnection and indents developed from the impact of foreshock turbulence can potentially contribute to dayside loss of planetary plasmas.
The scattering of electrons by heat-flux-driven whistler waves is explored with a particle-in-cell (PIC) simulation relevant to the transport of energetic electrons in flares. The simulation is initiated with a large heat flux that is produced using a kappa distribution of electrons with positive velocity and a cold return current beam. This system represents energetic electrons escaping from a reconnection-driven energy release site. This heat flux system drives large amplitude oblique whistler waves propagating both along and against the heat flux, as well as electron acoustic waves. While the waves are dominantly driven by the low energy electrons, including the cold return current beam, the energetic electrons resonate with and are scattered by the whistlers on time scales of the order of a hundred electron cyclotron times. Peak whistler amplitudes of $tilde{B} / B_{0} sim 0.125$ and angles of $sim 60 degree$ with respect to the background magnetic field are observed. Electron perpendicular energy is increased while the field-aligned electron heat flux is suppressed. The resulting scattering mean-free-paths of energetic electrons are small compared with the typical scale size of energy release sites in flares, which might lead to the effective confinement of energetic electrons that is required for the production of very energetic particles.
Foreshock transients upstream of Earths bow shock have been recently observed to accelerate electrons to many times their thermal energy. How such acceleration occurs is unknown, however. Using THEMIS case studies, we examine a subset of acceleration events (31 of 247 events) in foreshock transients with cores that exhibit gradual electron energy increases accompanied by low background magnetic field strength and large-amplitude magnetic fluctuations. Using the evolution of electron distributions and the energy increase rates at multiple spacecraft, we suggest that Fermi acceleration between a converging foreshock transients compressional boundary and the bow shock is responsible for the observed electron acceleration. We then show that a one-dimensional test particle simulation of an ideal Fermi acceleration model in fluctuating fields prescribed by the observations can reproduce the observed evolution of electron distributions, energy increase rate, and pitch-angle isotropy, providing further support for our hypothesis. Thus, Fermi acceleration is likely the principal electron acceleration mechanism in at least this subset of foreshock transient cores.
Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation (SWEAP) on Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband whistler-mode waves at radial distances less than ~0.3 AU. We present two example intervals of a few hours that include 8 waveform captures with whistler-mode waves and 26 representative electron distributions that are examined in detail. Two were narrow; 17 were clearly broadened, and 8 were very broad. The two with narrow strahl occurred when there were either no whistlers or very intermittent low amplitude waves. Six of the eight broadest distributions were associated with intense, long duration waves. Approximately half of the observed electron distributions have features consistent with an energy dependent scattering mechanism, as would be expected from interactions with narrowband waves. A comparison of the wave power in the whistler-mode frequency band to pitch angle width and a measure of anisotropy provides additional evidence for the electron scattering by whistler-mode waves. The pitch angle broadening occurs in over an energy range comparable to that obtained for the n=1 (co-streaming) resonance for the observed wave and plasma parameters. The additional observation that the heat flux is lower in the interval with multiple switchbacks may provide clues to the nature of switchbacks. These results provide strong evidence that the heat flux is reduced by narroweband whistler-mode waves scattering of strahl-energy electrons.
221 - G. Qin , F.-J. Kong , S.-S. Wu 2020
We present a study of the acceleration efficiency of suprathermal electrons at collisionless shock waves driven by interplanetary coronal mass ejections (ICMEs), with the data analysis from both the spacecraft observations and test-particle simulations. The observations are from the 3DP/EESA instrument onboard emph{Wind} during the 74 shock events listed in Yang et al. 2019, ApJ, and the test-particle simulations are carried out through 315 cases with different shock parameters. It is shown that a large shock-normal angle, upstream Alfv$acute{text e}$n Mach number, and shock compression ratio would enhance the shock acceleration efficiency. In addition, we develop a theoretical model of the critical shock normal angle for efficient shock acceleration by assuming the shock drift acceleration to be efficient. We also obtain models for the critical values of Mach number and compression ratio with efficient shock acceleration, based on the suggestion of Drury 1983 about the average momentum change of particle crossing of shock. It is shown that the theories have similar trends of the observations and simulations. Therefore, our results suggest that the shock drift acceleration is efficient in the electron acceleration by ICME-driven shocks, which confirms the findings of Yang et al.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا