Do you want to publish a course? Click here

Modeling mutations in bacteria and human tissues

409   0   0.0 ( 0 )
 Publication date 2016
  fields Biology
and research's language is English
 Authors Dario A. Leon




Ask ChatGPT about the research

This thesis is aimed at studying mutations, understood as trajectories in the DNA configuration space. An evolutive model of mutations in terms of Levy flights is proposed. The parameters of the model are estimated by means of data from the Long-Term Evolution Experiment (LTEE) with {it E. Coli} bacteria. The results of simulations on competition of clones, mean fitness, etc are compared with experimental data. We discuss the qualitative analogy found between the bacterial mutator phenotype and the cancerous cells. The role of radiation as source of mutations is analyzed. We focus on the case of Radons decay in the lungs in breathing.



rate research

Read More

171 - Vasily Ogryzko 2009
I compare two quantum-theoretical approaches to the phenomenon of adaptive mutations, termed here Q-cell and Q-genome. I use fluctuation trapping model as a general framework. I introduce notions of R-error and D-error and argue that the fluctuation trapping model has to employ a correlation between the R- and D- errors. Further, I compare how the two approaches can justify the R-D-error correlation, focusing on the advantages of the Q-cell approach. The positive role of environmentally induced decoherence (EID) on both steps of the adaptation process is emphasized. A starving bacterial cell is proposed to be in an einselected state. The intracellular dynamics in this state has a unitary character and I propose to interpret it as exponential growth in imaginary time, analogously to the commonly considered diffusion interpretation of the Schroedinger equation. Addition of a substrate leads to Wick rotation and a switch from imaginary time reproduction to a real time reproduction regime. Due to the variations at the genomic level (such as base tautomery), the starving cell has to be represented as a superposition of different components, all reproducing in imaginary time. Adidtion of a selective substrate, allowing only one of these components to amplify, will cause Wick rotation and amplification of this component, thus justifying the occurence of the R-D-error correlation. Further ramifications of the proposed ideas for evolutionary theory are discussed.
131 - Augusto Gonzalez 2015
Levy flights in the space of mutations model time evolution of bacterial DNA. Parameters in the model are adjusted in order to fit observations coming from the Long Time Evolution Experiment with E. Coli.
During last years theoretical works shed new light and proposed new hypothesis on the mechanisms which regulate the time behaviour of biological populations in different natural systems. Despite of this, the role of environmental variables in ecological systems is still an open question. Filling this gap of knowledge is a crucial task for a deeper comprehension of the dynamics of biological populations in real ecosystems. In this work we study how the dynamics of food spoilage bacteria influences the sensory characteristics of fresh fish specimens. This topic is crucial for a better understanding of the role played by the bacterial growth on the organoleptic properties, and for the quality evaluation and risk assessment of food products. We therefore analyze the time behaviour, in fresh fish specimens, of sensory characteristics starting from the growth curves of two spoilage bacterial communities. The theoretical study, initially based on a deterministic model, exploits experimental temperature profiles. As a first step, a model of predictive microbiology is used to reproduce the experimental behaviour of the two bacterial populations. Afterwards, the theoretical bacterial growths are converted, through suitable differential equations, into sensory scores, based on the Quality Index Method (QIM), a scoring system for freshness and quality sensory estimation of fishery products. As a third step, the theoretical curves of QIM scores are compared with the experimental data obtained by sensory analysis. Finally, the differential equations for QIM scores are modified by adding terms of multiplicative white noise, which mimics the effects of uncertainty and variability in sensory analysis. A better agreement between experimental and theoretical QIM scores is observed, in some cases, in the presence of suitable values of noise intensity respect to the deterministic analysis.
Data from a long time evolution experiment with Escherichia Coli and from a large study on copy number variations in subjects with european ancestry are analyzed in order to argue that mutations can be described as Levy flights in the mutation space. These Levy flights have at least two components: random single-base substitutions and large DNA rearrangements. From the data, we get estimations for the time rates of both events and the size distribution function of large rearrangements.
99 - Dina Mistry 2020
Mathematical and computational modeling approaches are increasingly used as quantitative tools in the analysis and forecasting of infectious disease epidemics. The growing need for realism in addressing complex public health questions is however calling for accurate models of the human contact patterns that govern the disease transmission processes. Here we present a data-driven approach to generate effective descriptions of population-level contact patterns by using highly detailed macro (census) and micro (survey) data on key socio-demographic features. We produce age-stratified contact matrices for 277 sub-national administrative regions of countries covering approximately 3.5 billion people and reflecting the high degree of cultural and societal diversity of the focus countries. We use the derived contact matrices to model the spread of airborne infectious diseases and show that sub-national heterogeneities in human mixing patterns have a marked impact on epidemic indicators such as the reproduction number and overall attack rate of epidemics of the same etiology. The contact patterns derived here are made publicly available as a modeling tool to study the impact of socio-economic differences and demographic heterogeneities across populations on the epidemiology of infectious diseases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا