Do you want to publish a course? Click here

Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

200   0   0.0 ( 0 )
 Added by Hanyu Wei
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection of supernova relic neutrinos could provide key support for our current understanding of stellar and cosmological evolution, and precise measurements of these neutrinos could yield novel insights into the universe. In this paper, we studied the detection potential of supernova relic neutrinos using linear alkyl benzene (LAB) as a slow liquid scintillator. The linear alkyl benzene features good separation of Cherenkov and scintillation lights, thereby providing a new route for particle identification. We further addressed key issues in current experiments, including (1) the charged current background of atmospheric neutrinos in water Cherenkov detectors and (2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. A kiloton-scale LAB detector at Jinping with $mathcal{O}$(10) years of data could discover supernova relic neutrinos with a sensitivity comparable to that of large-volume water Cherenkov detectors, typical liquid scintillator detectors, and liquid argon detectors.



rate research

Read More

It is challenging to achieve high precision energy resolution for large liquid scintillator detectors. Energy non-uniformity is one of the main obstacles. To surmount it, a calibration-data driven method was developed previously to reconstruct event energy in the JUNO experiment. In this paper, we investigated the choice of calibration sources thoroughly, optimized the calibration positions and corrected the residual detector azimuthal asymmetry. All these efforts lead to a reduction of the energy non-uniformity near the detector boundary, from about 0.64% to 0.38%. And within the fiducial volume of the detector it is improved from 0.3% to 0.17%. As a result the energy resolution could be further improved.
Environmental radioactivity is a dominant background for rare decay search experiments, and it is difficult to completely remove such an impurity from detector vessels. We propose a scintillation balloon as the active vessel of a liquid scintillator in order to identify this undesirable radioactivity. According to our feasibility studies, the scintillation balloon enables the bismuth--polonium sequential decay to be tagged with a 99.7% efficiency, assuming a KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector)-type liquid scintillator detector. This tagging of sequential decay using alpha-ray from the polonium improves the sensitivity to neutrinoless double-beta decay with rejecting beta-ray background from the bismuth.
The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such as JUNO, HyperKamiokande, etc, share the use of a large target mass, and the need of pushing light collection to the edge for maximal calorimetric information. Achieving high light collection implies considerable costs, especially when considering detector masses of several kt. A traditional strategy to maximize the effective photo-coverage with the minimum number of PMTs relies on Light Concentrators (LC), such as Winston Cones. In this paper, the authors introduce a novel concept called Occulting Light Concentrators (OLC), whereby a traditional LC gets tailored to a conventional PMT, by taking into account its single-photoelectron collection efficiency profile and thus occulting the worst performing portion of the photocathode. Thus, the OLC shape optimization takes into account not only the optical interface of the PMT, but also the maximization of the PMT detection performances. The light collection uniformity across the detector is another advantage of the OLC system. By considering the case of JUNO, we will show OLC capabilities in terms of light collection and energy resolution.
Liquid scintillator detectors are widely used in modern neutrino studies. The unique optical properties of semiconducting nanocrystals, known as quantum dots, offer intriguing possibilities for improving standard liquid scintillator, especially when combined with new photodetection technology. Quantum dots also provide a means to dope scintillator with candidate isotopes for neutrinoless double beta decay searches. In this work, the first studies of the scintillation properties of quantum-dot-doped liquid scintillator using both UV light and radioactive sources are presented.
154 - Michael Wurm 2010
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا