Do you want to publish a course? Click here

Investigating dust trapping in transition disks with millimeter-wave polarization

52   0   0.0 ( 0 )
 Added by Adriana Pohl
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. We study the dust polarization at mm wavelength in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three ring structure. Two narrow inner rings are located at the planet gap edges. For increasing observing wavelengths all three rings slightly change their position, where the innermost and outermost rings move inward. This distance is detectable comparing the results at ALMA bands 3, 6 and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks the polarization degree is as high as ~ 2% at band 3, which is well above the detection limit of future ALMA observations.



rate research

Read More

Planet formation is thought to begin with the growth of dust particles in protoplanetary disks from micrometer to millimeter and centimeter sizes. Dust growth is hindered by a number of growth barriers, according to dust evolution theory, while observational evidence indicates that somehow these barriers must have been overcome. The observational evidence of dust traps, in particular the Oph IRS 48 disk, with the Atacama Large Millimeter/submillimeter Array (ALMA) has changed our view of the dust growth process. In this article I review the history of dust trapping in models and observations.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at 336GHz of two transition disks, SR21 and HD135344B. In combination with previous ALMA observations from Cycle 0 at 689GHz, we compare the visibility profiles at the two frequencies and calculate the spectral index ($alpha_{rm{mm}}$). The observations of SR21 show a clear shift in the visibility nulls, indicating radial variations of the inner edge of the cavity at the two wavelengths. Notable radial variations of the spectral index are also detected for SR21 with values of $alpha_{rm{mm}}{sim}3.8-4.2$ in the inner region ($r<35$ AU) and $alpha_{rm{mm}}{sim}2.6-3.0$ outside. An axisymmetric ring (which we call the ring model) or a ring with the addition of an azimuthal Gaussian profile, for mimicking a vortex structure (which we call the vortex model), is assumed for fitting the disk morphology. For SR21, the ring model better fits the emission at 336GHz, conversely the vortex model better fits the 689GHz emission. For HD135344B, neither a significant shift in the null of the visibilities nor radial variations of $alpha_{rm{mm}}$ are detected. Furthermore, for HD135344B, the vortex model fits both frequencies better than the ring model. However, the azimuthal extent of the vortex increases with wavelength, contrary to model predictions for particle trapping by anticyclonic vortices. For both disks, the azimuthal variations of $alpha_{rm{mm}}$ remain uncertain to confirm azimuthal trapping. The comparison of the current data with a generic model of dust evolution that includes planet-disk interaction suggests that particles in the outer disk of SR21 have grown to millimetre sizes and have accumulated in a radial pressure bump, whereas with the current resolution there is not clear evidence of radial trapping in HD135344B, although it cannot be excluded either.
ALMA has revolutionized our view of protoplanetary disks, revealing structures such as gaps, rings and asymmetries that indicate dust trapping as an important mechanism in the planet formation process. However, the high resolution images have also shown that the optically thin assumption for millimeter continuum emission may not be valid and the low values of the spectral index may be related to optical depth rather than dust growth. Longer wavelength observations are essential to properly disentangle these effects. The high sensitivity and spatial resolution of the next-generation Very Large Array (ngVLA) will open up the possibilities to spatially resolve disk continuum emission at centimeter wavelengths and beyond, which allows the study of dust growth in disks in the optically thin regime and further constrain models of planet formation.
Trojans are defined as objects that share the orbit of a planet at the stable Lagrangian points $L_4$ and $L_5$. In the Solar System, these bodies show a broad size distribution ranging from micrometer($mu$m) to centimeter(cm) particles (Trojan dust) and up to kilometer (km) rocks (Trojan asteroids). It has also been theorized that earth-like Trojans may be formed in extra-solar systems. The Trojan formation mechanism is still under debate, especially theories involving the effects of dissipative forces from a viscous gaseous environment. We perform hydro-simulations to follow the evolution of a protoplanetary disk with an embedded 1--10 Jupiter-mass planet. On top of the gaseous disk, we set a distribution of $mu$m--cm dust particles interacting with the gas. This allows us to follow dust dynamics as solids get trapped around the Lagrangian points of the planet. We show that large vortices generated at the Lagrangian points are responsible for dust accumulation, where the leading Lagrangian point $L_4$ traps a larger amount of submillimeter (submm) particles than the trailing $L_5$, which traps mostly mm--cm particles. However, the total bulk mass, with typical values of $sim M_{rm moon}$, is more significant in $L_5$ than in $L_4$, in contrast to what is observed in the current Solar System a few gigayears later. Furthermore, the migration of the planet does not seem to affect the reported asymmetry between $L_4$ and $L_5$. The main initial mass reservoir for Trojan dust lies in the same co-orbital path of the planet, while dust migrating from the outer region (due to drag) contributes very little to its final mass, imposing strong mass constraints for the in situ formation scenario of Trojan planets.
Dust evolution in protoplanetary disks from small dust grains to pebbles is key to the planet formation process. The gas in protoplanetary disks should influence the vertical distribution of small dust grains ($sim$1 $mu m$) in the disk.Utilizing archival near-infrared polarized light and millimeter observations, we can measure the scale height and the flare parameter $beta$ of the small dust grain scattering surface and $^{12}$CO gas emission surface for three protoplanetary disks IM Lup, HD 163296, and HD 97048 (CU Cha). For two systems, IM Lup and HD 163296, the $^{12}$CO gas and small dust grains at small radii from the star have similar heights but at larger radii ($>$100 au) the dust grain scattering surface height is lower than the $^{12}$CO gas emission surface height. In the case of HD 97048, the small dust grain scattering surface has similar heights to the $^{12}$CO gas emission surface at all radii. We ran a protoplanetary disk radiative transfer model of a generic protoplanetary disk with TORUS and showed that there is no difference between the observed scattering surface and $^{12}$CO emission surface. We also performed analytical modeling of the system and found that gas-to-dust ratios larger than 100 could explain the observed difference in IM Lup and HD 163296. This is the first direct comparison of observations of gas and small dust grain heights distribution in protoplanetary disks. Future observations of gas emission and near-infrared scattered light instruments are needed to look for similar trends in other protoplanetary disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا