No Arabic abstract
Bedside caregivers assess infants pain at constant intervals by observing specific behavioral and physiological signs of pain. This standard has two main limitations. The first limitation is the intermittent assessment of pain, which might lead to missing pain when the infants are left unattended. Second, it is inconsistent since it depends on the observers subjective judgment and differs between observers. The intermittent and inconsistent assessment can induce poor treatment and, therefore, cause serious long-term consequences. To mitigate these limitations, the current standard can be augmented by an automated system that monitors infants continuously and provides quantitative and consistent assessment of pain. Several automated methods have been introduced to assess infants pain automatically based on analysis of behavioral or physiological pain indicators. This paper comprehensively reviews the automated approaches (i.e., approaches to feature extraction) for analyzing infants pain and the current efforts in automatic pain recognition. In addition, it reviews the databases available to the research community and discusses the current limitations of the automated pain assessment.
Image Quality Assessment (IQA) is important for scientific inquiry, especially in medical imaging and machine learning. Potential data quality issues can be exacerbated when human-based workflows use limited views of the data that may obscure digital artifacts. In practice, multiple factors such as network issues, accelerated acquisitions, motion artifacts, and imaging protocol design can impede the interpretation of image collections. The medical image processing community has developed a wide variety of tools for the inspection and validation of imaging data. Yet, IQA of computed tomography (CT) remains an under-recognized challenge, and no user-friendly tool is commonly available to address these potential issues. Here, we create and illustrate a pipeline specifically designed to identify and resolve issues encountered with large-scale data mining of clinically acquired CT data. Using the widely studied National Lung Screening Trial (NLST), we have identified approximately 4% of image volumes with quality concerns out of 17,392 scans. To assess robustness, we applied the proposed pipeline to our internal datasets where we find our tool is generalizable to clinically acquired medical images. In conclusion, the tool has been useful and time-saving for research study of clinical data, and the code and tutorials are publicly available at https://github.com/MASILab/QA_tool.
Current day pain assessment methods rely on patient self-report or by an observer like the Intensive Care Unit (ICU) nurses. Patient self-report is subjective to the individual and suffers due to poor recall. Pain assessment by manual observation is limited by the number of administrations per day and staff workload. Previous studies showed the feasibility of automatic pain assessment by detecting Facial Action Units (AUs). Pain is observed to be associated with certain facial action units (AUs). This method of pain assessment can overcome the pitfalls of present-day pain assessment techniques. All the previous studies are limited to controlled environment data. In this study, we evaluated the performance of OpenFace an open-source facial behavior analysis tool and AU R-CNN on the real-world ICU data. Presence of assisted breathing devices, variable lighting of ICUs, patient orientation with respect to camera significantly affected the performance of the models, although these showed the state-of-the-art results in facial behavior analysis tasks. In this study, we show the need for automated pain assessment system which is trained on real-world ICU data for clinically acceptable pain assessment system.
We present dialogue management routines for a system to engage in multiparty agent-infant interaction. The ultimate purpose of this research is to help infants learn a visual sign language by engaging them in naturalistic and socially contingent conversations during an early-life critical period for language development (ages 6 to 12 months) as initiated by an artificial agent. As a first step, we focus on creating and maintaining agent-infant engagement that elicits appropriate and socially contingent responses from the baby. Our system includes two agents, a physical robot and an animated virtual human. The systems multimodal perception includes an eye-tracker (measures attention) and a thermal infrared imaging camera (measures patterns of emotional arousal). A dialogue policy is presented that selects individual actions and planned multiparty sequences based on perceptual inputs about the babys internal changing states of emotional engagement. The present version of the system was evaluated in interaction with 8 babies. All babies demonstrated spontaneous and sustained engagement with the agents for several minutes, with patterns of conversationally relevant and socially contingent behaviors. We further performed a detailed case-study analysis with annotation of all agent and baby behaviors. Results show that the babys behaviors were generally relevant to agent conversations and contained direct evidence for socially contingent responses by the baby to specific linguistic samples produced by the avatar. This work demonstrates the potential for language learning from agents in very young babies and has especially broad implications regarding the use of artificial agents with babies who have minimal language exposure in early life.
The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality visio-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example.
Background: The role of neonatal pain on the developing nervous system is not completely understood, but evidence suggests that sensory pathways are influenced by an infants pain experience. Research has shown that an infants previous pain experiences lead to an increased, and likely abnormal, response to subsequent painful stimuli. We are working to improve neonatal pain detection through automated devices that continuously monitor an infant. The current study outlines some of the initial steps we have taken to evaluate Near Infrared Spectroscopy (NIRS) as a technology to detect neonatal pain. Our findings may provide neonatal intensive care unit (NICU) practitioners with the data necessary to monitor and perhaps better manage an abnormal pain response. Methods: A prospective pilot study was conducted to evaluate nociceptive evoked cortical activity in preterm infants. NIRS data were recorded for approximately 10 minutes prior to an acute painful procedure and for approximately 10 minutes after the procedure. Individual data collection events were performed at a weekly maximum frequency. Eligible infants included those admitted to the Tampa General Hospital (TGH) NICU with a birth gestational age of less than 37 weeks. Results: A total of 15 infants were enrolled and 25 individual studies were completed. Analysis demonstrated a statistically significant difference between the median of the pre- and post-painful procedure data sets in each infants first NIRS collection (p value = 0.01). Conclusions: Initial analysis shows NIRS may be useful in detecting acute pain. An acute painful procedure is typically followed by a negative deflection in NIRS readings.