Do you want to publish a course? Click here

Differentiability of the Dirichlet to Neumann map under movements of polygonal inclusions with an application to shape optimization

78   0   0.0 ( 0 )
 Added by Elena Beretta
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we derive rigorously the derivative of the Dirichlet to Neumann map and of the Neumann to Dirichlet map of the conductivity equation with respect to movements of vertices of triangular conductivity inclusions. We apply this result to formulate an optimization problem based on a shape derivative approach.



rate research

Read More

Using a distributed representation formula of the Gateaux derivative of the Dirichlet to Neumann map with respect to movements of a polygonal conductivity inclusion, [11], we extend the results obtained in [8] proving global Lipschitz stability for the determination of a polygonal conductivity inclusion embedded in a layered medium from knowledge of the Dirichlet to Neumann map.
It was recently shown that the nodal deficiency of an eigenfunction is encoded in the spectrum of the Dirichlet-to-Neumann operators for the eigenfunctions positive and negative nodal domains. While originally derived using symplectic methods, this result can also be understood through the spectral flow for a family of boundary conditions imposed on the nodal set, or, equivalently, a family of operators with delta function potentials supported on the nodal set. In this paper we explicitly describe this flow for a Schrodinger operator with separable potential on a rectangular domain, and determine a mechanism by which lower energy eigenfunctions do or do not contribute to the nodal deficiency.
248 - Genqian Liu , Xiaoming Tan 2021
This paper is devoted to investigate the heat trace asymptotic expansion corresponding to the magnetic Steklov eigenvalue problem on Riemannian manifolds with boundary. We establish an effective procedure, by which we can calculate all the coefficients $a_0$, $a_1$, $dots$, $a_{n-1}$ of the heat trace asymptotic expansion. In particular, we explicitly give the expressions for the first four coefficients. These coefficients are spectral invariants which provide precise information concerning the volume and curvatures of the boundary of the manifold and some physical quantities by the magnetic Steklov eigenvalues.
We study the inverse problem of identifying a periodic potential perturbation of the Dirichlet Laplacian acting in an infinite cylindrical domain, whose cross section is assumed to be bounded. We prove log-log stable determination of the potential with respect to the partial Dirichlet-to-Neumann map, where the Neumann data is taken on slightly more than half of the boundary of the domain.
We study the recovery of piecewise analytic density and stiffness tensor of a three-dimensional domain from the local dynamical Dirichlet-to-Neumann map. We give global uniqueness results if the medium is transversely isotropic with known axis of symmetry or orthorhombic with known symmetry planes on each subdomain. We also obtain uniqueness of a fully anisotropic stiffness tensor, assuming that it is piecewise constant and that the interfaces which separate the subdomains have curved portions. The domain partition need not to be known. Precisely, we show that a domain partition consisting of subanalytic sets is simultaneously uniquely determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا