No Arabic abstract
According to Munoz-Gutierrez et al. (2015) the orbit of comet 1P/Halley is chaotic with a surprisingly small Lyapunov time scale of order its orbital period. In this work we analyse the origin of chaos in Halleys orbit and the growth of perturbations, in order to get a better understanding of this unusually short time scale. We perform N-body simulations to model Halleys orbit in the Solar System and measure the separation between neighbouring trajectories. To be able to interpret the numerical results, we use a semi-analytical map to demonstrate different growth modes, i.e. linear, oscillatory or exponential, and transitions between these modes. We find the Lyapunov time scale of Halleys orbit to be of order 300 years, which is significantly longer than previous estimates in the literature. This discrepancy could be due to the different methods used to measure the Lyapunov time scale. A surprising result is that next to Jupiter, also encounters with Venus contribute to the exponential growth in the next 3000 years. Finally, we note an interesting application of the sub-linear, oscillatory growth mode to an ensemble of bodies moving through the Solar System. Whereas in the absence of encounters with a third body the ensemble spreads out linearly in time, the accumulation of weak encounters can increase the lifetime of such systems due to the oscillatory behaviour.
Recently the ROSINA mass spectrometer suite on board the European Space Agencys Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov-Gerasimenko of O2/H2O = 3.80+/-0.85%. It could be shown that O2 is indeed a parent species and that the derived abundances point to a primordial origin. One crucial question is whether the O2 abundance is peculiar to comet 67P/Churyumov-Gerasimenko or Jupiter family comets in general or whether also Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument obtained during the flyby by the European Space Agencys Giotto probe at comet 1P/Halley. Our investigation indicates that a production rate of O2 of 3.7+/-1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O2 might be a rather common and abundant parent species.
The discovery of the second interstellar object 2I/Borisov on 2019 August 30 raises the question of whether it was ejected recently from a nearby stellar system. Here we compute the asymptotic incoming trajectory of 2I/Borisov, based on both recent and pre-discovery data extending back to December 2018, using a range of force models that account for cometary outgassing. From Gaia DR2 astrometry and radial velocities, we trace back in time the Galactic orbits of 7.4 million stars to look for close encounters with 2I/Borisov. The closest encounter we find took place 910kyr ago with the M0V star Ross 573, at a separation of 0.068pc (90% confidence interval of 0.053-0.09pc) with a relative velocity of 23km/s. This encounter is nine times closer than the closest past encounter identified for the first interstellar object 1I/Oumuamua. Ejection of 2I/Borisov via a three-body encounter in a binary or planetary system is possible, although such a large ejection velocity is unlikely to be obtained and Ross 573 shows no signs of binarity. We also identify and discuss some other recent close encounters, recognizing that if 2I/Borisov is more than about 10Myr old, our search would be unlikely to find its parent system.
Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1-10% range by the ROSINA-DFMS instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula, and that its incorporation as crystalline ice is highly implausible because this would imply much larger abundances of Ar and N2 than those observed in the coma. Assuming that radiolysis has been the only O2 production mechanism at work, we conclude that the formation of comet 67P/Churyumov-Gerasimenko is possible in a dense and early protosolar nebula in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/particles formed in ISM and (2) agglomeration from clathrates that formed during the disks cooling. The former scenario is found consistent with the strong correlation between O2 and H2O observed in 67P/C-Gs coma while the latter scenario requires that clathrates formed from ISM icy grains that crystallized when entering the protosolar nebula.
The turbulent environment from which stars form may lead to misalignment between the stellar spin and the remnant protoplanetary disk. By using hydrodynamic and magnetohydrodynamic simulations, we demonstrate that a wide range of stellar obliquities may be produced as a by-product of forming a star within a turbulent environment. We present a simple semi-analytic model that reveals this connection between the turbulent motions and the orientation of a star and its disk. Our results are consistent with the observed obliquity distribution of hot Jupiters. Migration of misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disk, rather than tidal dissipation of the star-planet interaction.
Recent observations made by the Rosetta/ROSINA instrument have detected molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko with abundances at the 1-10% level relative to H2O. Previous studies have indicated that the likely origin of the O2 may be surface chemistry of primordial (dark cloud) origin, requiring somewhat warmer, denser and extreme H-atom poor conditions than are usually assumed. In this study we propose a primordial gas-phase origin for the O2 which is subsequently frozen and effectively hidden until the ice mantles are sublimated in the comets coma. Our study presents results from a three-phase astrochemical model that simulates the chemical evolution of ices in the primordial dark cloud phase, its gravitational collapse, and evolution in the early protosolar nebula. We find that the O2 abundance can be produced and is fairly robust to the choice of the free parameters. Good matches for the O2:H2O ratio and, to a lesser extent, the N2:CO and CO:H2O ratios are obtained, but the models significantly over-produce N2. We speculate that the low value of N2:O2 that is observed is a consequence of the specific thermal history of the comet.