No Arabic abstract
We investigate the integration of word embeddings as classification features in the setting of large scale text classification. Such representations have been used in a plethora of tasks, however their application in classification scenarios with thousands of classes has not been extensively researched, partially due to hardware limitations. In this work, we examine efficient composition functions to obtain document-level from word-level embeddings and we subsequently investigate their combination with the traditional one-hot-encoding representations. By presenting empirical evidence on large, multi-class, multi-label classification problems, we demonstrate the efficiency and the performance benefits of this combination.
Capturing the semantics of related biological concepts, such as genes and mutations, is of significant importance to many research tasks in computational biology such as protein-protein interaction detection, gene-drug association prediction, and biomedical literature-based discovery. Here, we propose to leverage state-of-the-art text mining tools and machine learning models to learn the semantics via vector representations (aka. embeddings) of over 400,000 biological concepts mentioned in the entire PubMed abstracts. Our learned embeddings, namely BioConceptVec, can capture related concepts based on their surrounding contextual information in the literature, which is beyond exact term match or co-occurrence-based methods. BioConceptVec has been thoroughly evaluated in multiple bioinformatics tasks consisting of over 25 million instances from nine different biological datasets. The evaluation results demonstrate that BioConceptVec has better performance than existing methods in all tasks. Finally, BioConceptVec is made freely available to the research community and general public via https://github.com/ncbi-nlp/BioConceptVec.
In this paper, we focus on the classification of books using short descriptive texts (cover blurbs) and additional metadata. Building upon BERT, a deep neural language model, we demonstrate how to combine text representations with metadata and knowledge graph embeddings, which encode author information. Compared to the standard BERT approach we achieve considerably better results for the classification task. For a more coarse-grained classification using eight labels we achieve an F1- score of 87.20, while a detailed classification using 343 labels yields an F1-score of 64.70. We make the source code and trained models of our experiments publicly available
Mixup, a recent proposed data augmentation method through linearly interpolating inputs and modeling targets of random samples, has demonstrated its capability of significantly improving the predictive accuracy of the state-of-the-art networks for image classification. However, how this technique can be applied to and what is its effectiveness on natural language processing (NLP) tasks have not been investigated. In this paper, we propose two strategies for the adaption of Mixup on sentence classification: one performs interpolation on word embeddings and another on sentence embeddings. We conduct experiments to evaluate our methods using several benchmark datasets. Our studies show that such interpolation strategies serve as an effective, domain independent data augmentation approach for sentence classification, and can result in significant accuracy improvement for both CNN and LSTM models.
When dealing with continuous numeric features, we usually adopt feature discretization. In this work, to find the best way to conduct feature discretization, we present some theoretical analysis, in which we focus on analyzing correctness and robustness of feature discretization. Then, we propose a novel discretization method called Local Linear Encoding (LLE). Experiments on two numeric datasets show that, LLE can outperform conventional discretization method with much fewer model parameters.
Several variants of deep neural networks have been successfully employed for building parametric models that project variable-duration spoken word segments onto fixed-size vector representations, or acoustic word embeddings (AWEs). However, it remains unclear to what degree we can rely on the distance in the emerging AWE space as an estimate of word-form similarity. In this paper, we ask: does the distance in the acoustic embedding space correlate with phonological dissimilarity? To answer this question, we empirically investigate the performance of supervised approaches for AWEs with different neural architectures and learning objectives. We train AWE models in controlled settings for two languages (German and Czech) and evaluate the embeddings on two tasks: word discrimination and phonological similarity. Our experiments show that (1) the distance in the embedding space in the best cases only moderately correlates with phonological distance, and (2) improving the performance on the word discrimination task does not necessarily yield models that better reflect word phonological similarity. Our findings highlight the necessity to rethink the current intrinsic evaluations for AWEs.