No Arabic abstract
We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1mJy/beam at 1.4GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1mJy/beam. However, one survey found an areal density of radio variables on timescales of decades that is a factor of ~4 times greater than a second survey which was conducted on timescales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be $rho =0.98mathrm{deg}^{-2}$ on timescales of 6 months to 8 years. We make use of WISE infrared cross-ids, and identify all variable sources as an AGN of some description. We suggest that the discrepancy between previous VLA results is due to the different time scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on timescales of 2 - 5 years.
Insensitive to dust obscuration, radio wavelengths are ideal to study star-forming galaxies free of dust induced biases. Using data from the Phoenix Deep Survey, we have identified a sample of star-forming extremely red objects (EROs). Stacking of the radio images of the radio-undetected star-forming EROs revealed a significant radio detection. Using the expected median redshift, we estimate an average star-formation rate of 61 M_sun/yr for these galaxies.
The Phoenix Deep Survey (PDS) is a multiwavelength survey based on deep 1.4 GHz radio observations used to identify a large sample of star forming galaxies to z=1. Here we present an exploration of the evolutionary constraints on the star-forming population imposed by the 1.4 GHz source counts, followed by an analysis of the average properties of extremely red galaxies in the PDS, by using the stacking technique.
We report the results of the Australia Telescope Compact Array (ATCA) 15 mm observation of the Phoenix galaxy cluster possessing an extreme star-burst brightest cluster galaxy (BCG) at the cluster center. We spatially resolved radio emission around the BCG, and found diffuse bipolar and bar-shape structures extending from the active galactic nucleus (AGN) of the BCG. They are likely radio jets/lobes, whose sizes are ~10-20 kpc and locations are aligned with X-ray cavities. If we assume that the radio jets/lobes expand with the sound velocity, their ages are estimated to be ~10 Myr. We also found compact radio emissions near the center and suggest that they are another young bipolar jets with ~1 Myr of age. Moreover, we found extended radio emission surrounding the AGN and discussed the possibility that the component is a product of the cooling flow, by considering synchrotron radiation partially absorbed by molecular clumps, free-free emission from the warm ionized gas, and the spinning dust emission from dusty circum-galactic medium.
Deep radio observations at 1.4GHz for the Extended Chandra Deep Field South were performed in June through September of 2007 and presented in a first data release (Miller et al. 2008). The survey was made using six separate pointings of the Very Large Array (VLA) with over 40 hours of observation per pointing. In the current paper, we improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree and reaches a best rms sensitivity of 6 uJy and has a typical sensitivity of 7.4 uJy per 2.8 by 1.6 beam. We also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise along with information on source sizes and relevant pointing data. We discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications (Bonzini et al. 2012) are used to identify 17 likely multiple-component sources and arrive at a catalog of 883 radio sources, which is roughly double the number of sources contained in the first data release.
The Phoenix Deep Survey (PDS) is a multiwavelength survey based on deep 1.4 GHz radio observations used to identify a large sample of star forming galaxies to z=1. Photometric redshifts are estimated for the optical counterparts to the radio-detected galaxies, and their uncertainties quantified by comparison with spectroscopic redshift measurements. The photometric redshift estimates and associated best-fitting spectral energy distributions are used in a stacking analysis exploring the mean radio properties of U-band selected galaxies. Average flux densities of a few microJy are measured.