Do you want to publish a course? Click here

Impact of storage competition on energy markets

321   0   0.0 ( 0 )
 Added by Stan Zachary
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We study how storage, operating as a price maker within a market environment, may be optimally operated over an extended period of time. The optimality criterion may be the maximisation of the profit of the storage itself, where this profit results from the exploitation of the differences in market clearing prices at different times. Alternatively it may be the minimisation of the cost of generation, or the maximisation of consumer surplus or social welfare. In all cases there is calculated for each successive time-step the cost function measuring the total impact of whatever action is taken by the storage. The succession of such cost functions provides the information for the storage to determine how to behave over time, forming the basis of the appropriate optimisation problem. Further, optimal decision making, even over a very long or indefinite time period, usually depends on a knowledge of costs over a relatively short running time horizon -- for storage of electrical energy typically of the order of a day or so. We study particularly competition between multiple stores, where the objective of each store is to maximise its own income given the activities of the remainder. We show that, at the Cournot Nash equilibrium, multiple large stores collectively erode their own abilities to make profits: essentially each store attempts to increase its own profit over time by overcompeting at the expense of the remainder. We quantify this for linear price functions We give examples throughout based on Great Britain spot-price market data.



rate research

Read More

Reduced installation and operating costs give energy storage systems an opportunity to participate actively and profitably in electricity markets. In addition to providing ancillary services, energy storage systems can also arbitrage temporal price differences. Congestion in the transmission network often accentuates these price differences and will under certain circumstances enhance the profitability of arbitrage. On the other hand, congestion may also limit the ability of a given storage device to take advantage of arbitrage opportunities. This paper analyzes how transmission congestion affects the profitability of arbitrage by storage devices in markets with perfect and imperfect competition. Imperfect competition is modeled using a bilevel optimization where the offers and bids submitted by the storage devices can alter the market outcome. Price-taker and price-maker assumptions are also investigated through market price duration curves. This analysis is based on simulating an entire year of market operation on the IEEE Reliability Test system.
Large scale electricity storage is set to play an increasingly important role in the management of future energy networks. A major aspect of the economics of such projects is captured in arbitrage, i.e. buying electricity when it is cheap and selling it when it is expensive. We consider a mathematical model which may account for nonlinear---and possibly stochastically evolving---cost functions, market impact, input and output rate constraints and both time-dependent and time-independent inefficiencies or losses in the storage process. We develop an algorithm which is maximally efficient in the sense that it incorporates the result that, at each point in time, the optimal management decision depends only a finite, and typically short, time horizon. We give examples related to the management of a real-world system. Finally we consider a model in which the associated costs evolve stochastically in time. Our results are formulated in a perfectly general setting which permits their application to other commodity storage problems.
The increasing reliance on renewable energy generation means that storage may well play a much greater role in the balancing of future electricity systems. We show how heterogeneous stores, differing in capacity and rate constraints, may be optimally, or nearly optimally, scheduled to assist in such balancing, with the aim of minimising the total imbalance (unserved energy) over any given period of time. It further turns out that in many cases the optimal policies are such that the optimal decision at each point in time is independent of the future evolution of the supply-demand balance in the system, so that these policies remain optimal in a stochastic environment.
We show how to value both variable generation and energy storage to enable them to be integrated fairly and optimally into electricity capacity markets. We develop theory based on balancing expected energy unserved against costs of capacity procurement, and in which the optimal procurement is that necessary to meet an appropriate reliability standard. For conventional generation the theory reduces to that already in common use. Further the valuation of both variable generation and storage coincides with the traditional risk-based approach based on equivalent firm capacity. The determination of the equivalent firm capacity of storage requires particular care; this is due both to the flexibility with which storage added to an existing system may be scheduled, and also because, when any resource is added to an existing system, storage already within that system may be flexibly rescheduled. We illustrate the theory with an example based on the GB system.
This paper presents a framework for deriving the storage capacity that an electricity system requires in order to satisfy a chosen risk appetite. The framework takes as inputs user-defined event categories, parameterised by peak power-not-served, acceptable number of events per year and permitted probability of exceeding these constraints, and returns as an output the total capacity of storage that is needed. For increased model accuracy, our methodology incorporates multiple nodes with limited transfer capacities, and we provide a foresight-free dispatch policy for application to this setting. Finally, we demonstrate the chance-constrained capacity determination via application to a model of the British network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا