Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving


Abstract in English

Conventional neuroimaging analyses have revealed the computational specificity of localized brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction. We applied this approach to a simulated driving task and examine directed relationships between brain activity and continuous driving behavior (steering or heading error). Our results indicated that two neuro-behavioral states emerge in this naturalistic environment: a Proactive brain state that actively plans the response to the sensory information, and a Reactive brain state that processes incoming information and reacts to environmental statistics.

Download