Do you want to publish a course? Click here

A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE)

286   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new quantitative technique that determines the times and durations of substorm expansion and recovery phases and possible growth phases based on percentiles of the rate of change of auroral electrojet indices. By being able to prescribe different percentile values, we can determine the onset and duration of substorm phases for smaller or larger variations of the auroral index or indeed any auroral zone ground-based magnetometer data. We apply this technique to the SuperMAG AL (SML) index and compare our expansion phase onset times with previous lists of substorm onsets. We find that more than 50% of events in previous lists occur within 20 min of our identified onsets. We also present a comparison of superposed epoch analyses of SML based on our onsets identified by our technique and existing onset lists and find that the general characteristics of the substorm bay are comparable. By prescribing user-defined thresholds, this automated, quantitative technique represents an improvement over any visual identification of substorm onsets or indeed any fixed threshold method.



rate research

Read More

We introduce GalWeight, a new technique for assigning galaxy cluster membership. This technique is specifically designed to simultaneously maximize the number of bona fide cluster members while minimizing the number of contaminating interlopers. The GalWeight technique can be applied to both massive galaxy clusters and poor galaxy groups. Moreover, it is effective in identifying members in both the virial and infall regions with high efficiency. We apply the GalWeight technique to MDPL2 & Bolshoi N-body simulations, and find that it is $> 98%$ accurate in correctly assigning cluster membership. We show that GalWeight compares very favorably against four well-known existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM). We also apply the GalWeight technique to a sample of twelve Abell clusters (including the Coma cluster) using observations from the Sloan Digital Sky Survey. We end by discussing GalWeights potential for other astrophysical applications.
Magnetic field-line reconnection is a universal plasma process responsible for the conversion of magnetic field energy to the plasma heating and charged particle acceleration. Solar flares and Earths magnetospheric substorms are two most investigated dynamical systems where magnetic reconnection is believed to be responsible for global magnetic field reconfiguration and energization of plasma populations. Such a reconfiguration includes formation of a long-living current systems connecting the primary energy release region and cold dense conductive plasma of photosphere/ionosphere. In both flares and substorms the evolution of this current system correlates with formation and dynamics of energetic particle fluxes. Our study is focused on this similarity between flares and substorms. Using a wide range of datasets available for flare and substorm investigations, we compare qualitatively dynamics of currents and energetic particle fluxes for one flare and one substorm. We showed that there is a clear correlation between energetic particle bursts (associated with energy release due to magnetic reconnection) and magnetic field reconfiguration/formation of current system. We then discuss how datasets of in-situ measurements in the magnetospheric substorm can help in interpretation of datasets gathered for the solar flare.
We present three eastward-expanding auroral surge (EEAS) events that were observed intermittently at intervals of about 15 min in the post-midnight sector (01:55-02:40 MLT) by all-sky imagers and magnetometers in northern Europe. It was deduced that each surge occurred just after each onset of a multiple-onset substorm, which was small-scale and did not clearly expand westward, because they were observed almost simultaneously with Pi 2 pulsations at the magnetic equator and magnetic bay variations at middle-to-high latitudes associated with the DP-1 current system. The EEASs showed similar properties to omega bands or torches reported in previous studies, such as recurrence intervals of about 15 min, concurrence with magnetic pulsations with amplitudes of several tens of nanotesla, horizontal scales of 300-400 km, and occurrence of a pulsating aurora in a diffuse aurora after the passage of the EEASs. Furthermore, the EEASs showed similar temporal evolution to the omega bands, during which eastward-propagating auroral streamers occurred simultaneously in the poleward region, followed by the formation of north-south-aligned auroras, which eventually connected with the EEASs. Thus, we speculate that EEASs may be related to the generation process of omega bands. (Continued)
The dynamical relationship between magnetic storms and magnetospheric substorms presents one of the most controversial problems of contemporary geospace research. Here, we tackle this issue by applying a causal inference approach to two corresponding indices in conjunction with several relevant solar wind variables. We demonstrate that the vertical component of the interplanetary magnetic field is the strongest and common driver of both, storms and substorms, and explains their the previously reported association. These results hold during both solar maximum and minimum phases and suggest that, at least based on the analyzed indices, there is no statistical evidence for a direct or indirect dependency between substorms and storms. A physical mechanism by which substorms drive storms or vice versa is, therefore, unlikely.
Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm $textit{ Dst }$ $sim$ -40nT on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10min, with different dipolarization signatures and duration. The first one is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا