No Arabic abstract
We report a heat switch effect in single crystals of an antiferromagnet Co$_3$V$_2$O$_8$, that is, the thermal conductivity ($kappa$) can be changed with magnetic field in an extremely large scale. Due to successive magnetic phase transitions at 12--6 K, the zero-field $kappa(T)$ displays a deep minimum at 6.7 K and rather small magnitude at low temperatures. Both the temperature and field dependencies of $kappa$ demonstrate that the phonons are strongly scattered at the regime of magnetic phase transitions. Magnetic field can suppress magnetic scattering effect and significantly recover the phonon thermal conductivity. In particular, a 14 T field along the $a$ axis increases the $kappa$ at 7.5 K up to 100 times. For $H parallel c$, the magnitude of $kappa$ can be suppressed down to $sim$ 8% at some field-induced transition and can be enhanced up to 20 times at 14 T. The present results demonstrate that it is possible to design a kind of heat switch in the family of magnetic materials.
We present macroscopic and neutron diffraction data on multiferroic lightly Co-doped Ni$_3$V$_2$O$_8$. Doping Co into the parent compound suppresses the sequence of four magnetic phase transitions and only two magnetically ordered phases, the paraelectric high temperature incommensurate (HTI) and ferroelectric low temperature incommensurate (LTI), can be observed. Interestingly, the LTI multiferroic phase with a spiral (cycloidal) magnetic structure is stabilized down to at least 1.8 K, which could be revealed by measurements of the electric polarization and confirmed by neutron diffraction on single crystal samples. The extracted magnetic moments of the LTI phase contain besides the main exchange also fine components of the cycloid allowed by symmetry which result in a small amplitude variation of the magnetic moments along the cycloid propagation due to the site-dependent symmetry properties of the mixed representations. In the HTI phase a finite imaginary part of the spine magnetic moment could be deduced yielding a spin cycloid instead of a purely sinusoidal structure with an opposite spin chirality for different spine spin chains. The magnetic ordering of the cross-tie sites in both phases is different in comparison to the respective ones in the pure Ni compound. A wider temperature stability range of the HTI phase has been observed in comparison to Ni$_3$V$_2$O$_8$ which can be explained by an additional single-ion easy-axis anisotropy due to Co-doping. The larger incommensurability of the Co-doped compounds yields a larger ratio between the competing next-nearest neighbour and nearest neighbour interaction, which is $J_2/J_1$=0.43 (0.47) for a doping level of 7% (10%) Co compared to 0.39 in the parent compound.
Large single crystals of the new compound SrMn$_2$V$_2$O$_8$ have been grown by the floating-zone method. This transition-metal based oxide is isostructural to SrNi$_2$V$_2$O$_8$, described by the tetragonal space group $I4_1cd$. Magnetic properties were investigated by means of susceptibility, magnetization, and specific heat measurements. The title compound behaves like a one-dimensional magnetic system above the ordering temperature ($T_N$ = 43 K). The magnetic ground state can be described as a classical long-range ordered antiferromagnet with weak anisotropy.
Since the seminal ideas of Berezinskii, Kosterlitz and Thouless, topological excitations are at the heart of our understanding of a whole novel class of phase transitions. In most of the cases, those transitions are controlled by a single type of topological objects. There are however some situations, still poorly understood, where two dual topological excitations fight to control the phase diagram and the transition. Finding experimental realization of such cases is thus of considerable interest. We show here that this situation occurs in BaCo$_2$V$_2$O$_8$, a spin-1/2 Ising-like quasi-one dimensional antiferromagnet when subjected to a uniform magnetic field transverse to the Ising axis. Using neutron scattering experiments, we measure a drastic modification of the quantum excitations beyond a critical value of the magnetic field. This quantum phase transition is identified, through a comparison with theoretical calculations, to be a transition between two different types of solitonic topological objects, which are captured by different components of the dynamical structure factor.
Theoretical studies have predicted the existence of topological magnons in honeycomb compounds with zig-zag antiferromagnetic (AFM) order. Here we report the discovery of zig-zag AFM order in the layered and non-centrosymmetric honeycomb nickelate Ni$_2$Mo$_3$O$_8$ through a combination of magnetization, specific heat, x-ray and neutron diffraction and electron paramagnetic resonance measurements. It is the first example of such order in an integer-spin non-centrosymmetric structure ($P$$_6$3$mc$). Further, each of the two distinct sites of the bipartite honeycomb lattice has a unique crystal field environment, octahedral and tetrahedral Ni$^{2+}$ respectively, enabling independent substitution on each sublattice. Replacement of Ni by Mg on the octahedral site suppresses the long range magnetic order and results in a weakly ferromagnetic state. Conversely, substitution of Fe for Ni enhances the AFM ordering temperature. Thus Ni$_2$Mo$_3$O$_8$ provides a platform on which to explore the rich physics of $S = 1$ on the honeycomb in the presence of competing magnetic interactions with a non-centrosymmetric, formally piezeo-polar, crystal structure.
We use a combination of optical spectra, first principles calculations, and energy dependent magneto-optical measurements to elucidate the electronic structure and to study the phase diagram of Ni$_3$V$_2$O$_8$. We find a remarkable interplay of magnetic field and optical properties that reveals additional high magnetic field phases and an unexpected electronic structure which we associate with the strong magneto-dielectric couplings in this material over a wide energy range. Specifically, we observed several prominent magneto-dielectric effects that derive from changes in crystal field environment around Ni spine and cross-tie centers. This effect is consistent with a field-induced modification of local structure. Symmetry-breaking effects are also evident with temperature. We find Ni$_3$V$_2$O$_8$ to be an intermediate gap, local moment band insulator. This electronic structure is particularly favorable for magneto-dielectric couplings, because the material is not subject to the spin charge separation characteristic of strongly correlated large gap Mott insulators, while at the same time remaining a magnetic insulator independent of the particular spin order and temperature.