No Arabic abstract
Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor--oscillating neutral mesons for the two most promising collapse models, the QMUPL (Quantum Mechanics with Universal Position Localization) model and the mass-proportional CSL (Continuous Spontaneous Localization) model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those two collapse models and (ii) under particular assumptions the CSL case allows even to recover the decay dynamics. This in turn allows to predict the effective collapse rates solely based on the measured values for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral mesons ($K$-meson, $D$-meson, $B_d$-meson, $B_s$-meson) lead surprisingly to ranges comparable to those put forward by Adler (2007) and Ghirardi-Rimini-Weber (1986). Our results show that these systems at high energies are very sensitive to possible modifications of the standard quantum theory making them a very powerful laboratory to rule out certain collapse scenarios and studying the detailed physical processes solving the measurement problem.
We put forward the idea that classical blockchains and smart contracts are potentially useful primitives not only for classical cryptography, but for quantum cryptography as well. Abstractly, a smart contract is a functionality that allows parties to deposit funds, and release them upon fulfillment of algorithmically checkable conditions, and can thus be employed as a formal tool to enforce monetary incentives. In this work, we give the first example of the use of smart contracts in a quantum setting. We describe a simple hybrid classical-quantum payment system whose main ingredients are a classical blockchain capable of handling stateful smart contracts, and quantum lightning, a strengthening of public-key quantum money introduced by Zhandry (Eurocrypt19). Our hybrid payment system employs quantum states as banknotes and a classical blockchain to settle disputes and to keep track of the valid serial numbers. It has several desirable properties: it is decentralized, requiring no trust in any single entity; payments are as quick as quantum communication, regardless of the total number of users; when a quantum banknote is damaged or lost, the rightful owner can recover the lost value.
We propose a solution to the longstanding permalloy problem$-$why the particular composition of permalloy, Fe$_{21.5}$Ni$_{78.5}$, achieves a dramatic drop in hysteresis, while its material constants show no obvious signal of this behavior. We use our recently developed coercivity tool to show that a delicate balance between local instabilities and magnetic material constants are necessary to explain the dramatic drop of hysteresis at 78.5% Ni. Our findings are in agreement with the permalloy experiments and, more broadly, provide theoretical guidance for the discovery of novel low hysteresis magnetic alloys.
Recently, it has been stated that single-world interpretations of quantum theory are logically inconsistent. The claim is derived from contradicting statements of agents in a setup combining two Wigners-friend experiments. Those statements stem from applying the measurement-update rule subjectively, i.e., only for the respective agents own measurement. We argue that the contradiction expresses the incompatibility of collapse and unitarity - resulting in different formal descriptions of a measurement - and does not allow to dismiss any specific interpretation of quantum theory.
The term measurement in quantum theory (as well as in other physical theories) is ambiguous: It is used to describe both an experience - e.g., an observation in an experiment - and an interaction with the system under scrutiny. If doing physics is regarded as a creative activity to develop a meaningful description of the world, then one has to carefully discriminate between the two notions: An observers account of experience - consitutive to meaning - is hardly expressed exhaustively by the formal framework of an interaction within one particular theory. We develop a corresponding perspective onto central terms in quantum mechanics in general, and onto the measurement problem in particular.
A single-particle multi-branched wave-function is studied. Usual which-path tests show that if the detector placed on one branch clicks, the detectors on the other branches remain silent. By the collapse postulate, after this click, the state of the particle is reduced to a single branch, the branch on which the detector clicked. The present article challenges the collapse postulate, claiming that when one branch of the wave-function produces a click in a detector, the other branches dont disappear. They cant produce clicks in detectors, but they are still there. An experiment different from which-path test is proposed, which shows that detectors are responsible for strongly decohering the wave-function, but not for making parts of it disappear. Moreover, one of the branches supposed to disappear may produce an interference pattern with a wave-packet of another particle.