Do you want to publish a course? Click here

On approximating the free harmonic oscillator by a particle in a box

62   0   0.0 ( 0 )
 Added by Kunle Adegoke
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main purpose of this paper is to demonstrate and illustrate, once again, the potency of the variational technique as an approximation procedure for the quantization of quantum mechanical systems. By choosing particle-in-a-box wavefunctions as trial wavefunctions, with the size of the box as the variation parameter, approximate eigenenergies and the corresponding eigenfunctions are obtained for the one dimensional free harmonic oscillator.



rate research

Read More

It is widely known in quantum mechanics that solutions of the Schr{o}inger equation (SE) for a linear potential are in one-to-one correspondence with the solutions of the free SE. The physical reason for this correspondence is Einsteins principle of equivalence. What is usually not so widely known is that solutions of the Schr{o}dinger equation with harmonic potential can also be mapped to the solutions of the free Schr{o}dinger equation. The physical understanding of this equivalence is not known as precisely as in the case of the equivalence principle. We present a geometric picture that will link both of the above equivalences with one constraint on the Eisenhart metric.
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.
We consider a thermal quantum harmonic oscillator weakly coupled to a heat bath at a different temperature. We analytically study the quantum heat exchange statistics between the two systems using the quantum-optical master equation. We exactly compute the characteristic function of the heat distribution and show that it verifies the Jarzynski-Wojcik fluctuation theorem. We further evaluate the heat probability density in the limit of long thermalization times, both in the low and high temperature regimes, and investigate its time evolution by calculating its first two cumulants.
We show how a single trapped ion may be used to test a variety of important physical models realized as time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-induced electronic transitions. Alsing et al. [Phys. Rev. Lett. 94, 220401 (2005)] proposed that an exponentially decaying trap frequency could be used to simulate (thermal) Gibbons-Hawking radiation in an expanding universe, but the Hamiltonian used was incorrect. We apply our general solution to this experimental proposal, correcting the result for a single ion and showing that while the actual spectrum is different from the Gibbons-Hawking case, it nevertheless shares an important experimental signature with this result.
We consider the quantum harmonic oscillator in contact with a finite temperature bath, modelled by the Caldeira-Leggett master equation. Applying periodic kicks to the oscillator, we study the system in different dynamical regimes between classical integrability and chaos on the one hand, and ballistic or diffusive energy absorption on the other. We then investigate the influence of the heat bath on the oscillator in each case. Phase space techniques allow us to simulate the evolution of the system efficiently. In this way, we calculate high resolution Wigner functions at long times, where the system approaches a quasi-stationary cyclic evolution. Thereby, we are able to perform an accurate study of the thermodynamic properties of a non-integrable, quantum chaotic system in contact with a heat bath.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا