Do you want to publish a course? Click here

Motor control by precisely timed spike patterns

95   0   0.0 ( 0 )
 Added by Caroline Holmes
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

A fundamental problem in neuroscience is to understand how sequences of action potentials (spikes) encode information about sensory signals and motor outputs. Although traditional theories of neural coding assume that information is conveyed by the total number of spikes fired (spike rate), recent studies of sensory and motor activity have shown that far more information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information carried by spike timing actually plays a causal role in brain function. Here we demonstrate how a precise spike timing code is read out downstream by the muscles to control behavior. We provide both correlative and causal evidence to show that the nervous system uses millisecond-scale variations in the timing of spikes within multi-spike patterns to regulate a relatively simple behavior - respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision, and that significant improvements in applications, such as neural prosthetic devices, can be achieved by using precise spike timing information.



rate research

Read More

We analyse the storage and retrieval capacity in a recurrent neural network of spiking integrate and fire neurons. In the model we distinguish between a learning mode, during which the synaptic connections change according to a Spike-Timing Dependent Plasticity (STDP) rule, and a recall mode, in which connections strengths are no more plastic. Our findings show the ability of the network to store and recall periodic phase coded patterns a small number of neurons has been stimulated. The self sustained dynamics selectively gives an oscillating spiking activity that matches one of the stored patterns, depending on the initialization of the network.
In the realm of motor control, artificial agents cannot match the performance of their biological counterparts. We thus explore a neural control architecture that is both biologically plausible, and capable of fully autonomous learning. The architecture consists of feedback controllers that learn to achieve a desired state by selecting the errors that should drive them. This selection happens through a family of differential Hebbian learning rules that, through interaction with the environment, can learn to control systems where the error responds monotonically to the control signal. We next show that in a more general case, neural reinforcement learning can be coupled with a feedback controller to reduce errors that arise non-monotonically from the control signal. The use of feedback control reduces the complexity of the reinforcement learning problem, because only a desired value must be learned, with the controller handling the details of how it is reached. This makes the function to be learned simpler, potentially allowing to learn more complex actions. We discuss how this approach could be extended to hierarchical architectures.
A good understanding of how neurons use electrical pulses (i.e, spikes) to encode the signal information remains elusive. Analyzing spike sequences generated by individual neurons and by two coupled neurons (using the stochastic FitzHugh-Nagumo model), recent theoretical studies have found that the relative timing of the spikes can encode the signal information. Using a symbolic method to analyze the spike sequence, preferred and infrequent spike patterns were detected, whose probabilities vary with both, the amplitude and the frequency of the signal. To investigate if this encoding mechanism is plausible also for neuronal ensembles, here we analyze the activity of a group of neurons, when they all perceive a weak periodic signal. We find that, as in the case of one or two coupled neurons, the probabilities of the spike patterns, now computed from the spike sequences of all the neurons, depend on the signals amplitude and period, and thus, the patterns probabilities encode the information of the signal. We also find that the resonances with the period of the signal or with the noise level are more pronounced when a group of neurons perceive the signal, in comparison with when only one or two coupled neurons perceive it. Neuronal coupling is beneficial for signal encoding as a group of neurons is able to encode a small-amplitude signal, which could not be encoded when it is perceived by just one or two coupled neurons. Interestingly, we find that for a group of neurons, just a few connections with one another can significantly improve the encoding of small-amplitude signals. Our findings indicate that information encoding in preferred and infrequent spike patterns is a plausible mechanism that can be employed by neuronal populations to encode weak periodic inputs, exploiting the presence of neural noise.
Rhythmic activity has been associated with a wide range of cognitive processes. Previous studies have shown that spike-timing-dependent plasticity can facilitate the transfer of rhythmic activity downstream the information processing pathway. However, STDP has also been known to generate strong winner-take-all like competitions between subgroups of correlated synaptic inputs. Consequently, one might expect that STDP would induce strong competition between different rhythmicity channels thus preventing the multiplexing of information across different frequency channels. This study explored whether STDP facilitates the multiplexing of information across multiple frequency channels, and if so, under what conditions. We investigated the STDP dynamics in the framework of a model consisting of two competing subpopulations of neurons that synapse in a feedforward manner onto a single postsynaptic neuron. Each sub-population was assumed to oscillate in an independent manner and in a different frequency band. To investigate the STDP dynamics, a mean field Fokker-Planck theory was developed in the limit of the slow learning rate. Surprisingly, our theory predicted limited interactions between the different sub-groups. Our analysis further revealed that the interaction between these channels was mainly mediated by the shared component of the mean activity. Next, we generalized these results beyond the simplistic model using numerical simulations. We found that for a wide range of parameters, the system converged to a solution in which the post-synaptic neuron responded to both rhythms. Nevertheless, all the synaptic weights remained dynamic and did not converge to a fixed point. These findings imply that STDP can support the multiplexing of rhythmic information and demonstrate how functionality can be retained in the face of continuous remodeling of all the synaptic weights.
The role of synchronous firing in sensory coding and cognition remains controversial. While studies, focusing on its mechanistic consequences in attentional tasks, suggest that synchronization dynamically boosts sensory processing, others failed to find significant synchronization levels in such tasks. We attempt to understand both lines of evidence within a coherent theoretical framework. We conceptualize synchronization as an independent control parameter to study how the postsynaptic neuron transmits the average firing activity of a presynaptic population, in the presence of synchronization. We apply the Berger-Levy theory of energy efficient information transmission to interpret simulations of a Hodgkin-Huxley-type postsynaptic neuron model, where we varied the firing rate and synchronization level in the presynaptic population independently. We find that for a fixed presynaptic firing rate the simulated postsynaptic interspike interval distribution depends on the synchronization level and is well-described by a generalized extreme value distribution. For synchronization levels of 15% to 50%, we find that the optimal distribution of presynaptic firing rate, maximizing the mutual information per unit cost, is maximized at ~30% synchronization level. These results suggest that the statistics and energy efficiency of neuronal communication channels, through which the input rate is communicated, can be dynamically adapted by the synchronization level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا