Do you want to publish a course? Click here

Manifestation of chirality in the vortex lattice in a two-dimensional topological superconductor

93   0   0.0 ( 0 )
 Added by Kaori Tanaka
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the vortex lattice in a two-dimensional s-wave topological superconductor with Rashba spin-orbit coupling and Zeeman field by solving the Bogoliubov-de Gennes equations self-consistently for the superconducting order parameter. We find that when spin-orbit coupling is relatively weak, one of the two underlying chiralities in the topological superconducting state can be strongly manifest in the vortex core structure and govern the response of the system to vorticity and a nonmagnetic impurity where the vortex is pinned. The Majorana zero mode in the vortex core is found to be robust against the nonmagnetic impurity in that it remains effectively a zero-energy bound state regardless of the impurity potential strength and the major chirality. The spin polarization of the Majorana bound state depends on the major chirality for weak spin-orbit coupling, while it is determined simply by the vorticity when spin-orbit coupling is relatively strong.



rate research

Read More

The state of the vortex lattice extremely close to the superconducting to normal transition in an applied magnetic field is investigated in high purity niobium. We observe that thermal fluctuations of the order parameter broaden the superconducting to normal transition into a crossover but no sign of a first order vortex lattice melting transition is detected in measurements of the heat capacity or the small angle neutron scattering (SANS) intensity. Direct observation of the vortices via SANS always finds a well ordered vortex lattice. The fluctuation broadening is considered in terms of the Lowest Landau Level theory of critical fluctuations and scaling is found to occur over a large H_{c2}(T) range.
124 - Lei Hao , C. S. Ting 2016
We find a series of topological phase transitions in a half-metal/superconductor heterostructure, by tuning the direction of the magnetization of the half-metal film. These include transitions between a topological superconducting phase with a bulk gap and another phase without a bulk gap but has a ubiquitous local gap. At the same time, the edge states change from counter-propagating Majorana edge modes to unidirectional Majorana edge modes. In addition, we find transitions between the second phase and a nodal phase which turns out to be a two-dimensional Weyl superconductor with Fermi line edge states. We identify the topological invariants relevant to each phase and the symmetry that protects the Weyl superconductivity phase.
We report on the observation of bulk superconductivity from dc magnetization measurements in a cylindrical single crystal of CuxBi2Se3. The magnitude of the magnetization in the Meissner state is very small and the magnetic-field dependence of the magnetization just above the lower critical field Hc1 is very different from those of usual type-II superconductors. We studied the character of the vortex state theoretically in a spin-triplet pairing superconductor and compared it with the experimental results. The results showed that, the superconductivity observed in CuxBi2Se3 is consistent with the spin-triplet pairing superconductivity with odd parity. We also observed a rapid relaxation phenomenon of the superconducting diamagnetism.
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.0075NbSe2 single crystal, we show that at low temperatures, the vortex lattice in a 3-dimensional superconductor disorders in two steps across the peak effect. At the onset of the peak effect, the equilibrium Bragg glass transforms into an orientational glass through the proliferation of dislocations. At a higher field, the dislocations dissociate into isolated disclination giving rise to an amorphous vortex glass. We also show the existence of a variety of additional non-equilibrium metastable states, which can be accessed through different thermomagnetic cycling.
We perform self-consistent studies of two-dimensional (2D) $s$-wave topological superconductivity (TSC) with Rashba spin-orbit coupling and Zeeman field by solving the Bogoliubov-de Gennes equations. In particular, we examine the effects of a nonmagnetic impurity in detail and show that the nature of the spin-polarised midgap bound state varies significantly depending on the material parameters. Most notably, a nonmagnetic impurity in a 2D $s$-wave topological superconductor can act like a magnetic impurity in a conventional $s$-wave superconductor, leading to phase transitions of the ground state as the impurity potential is varied. Furthermore, by solving for the spin-dependent Hartree potential self-consistently along with the superconducting order parameter, we demonstrate that topological charge density waves can coexist with TSC at half filling just as in a conventional $s$-wave superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا