No Arabic abstract
We study the $zapprox3.5$ intergalactic medium (IGM) by comparing new, high-quality absorption spectra of eight QSOs with $langle z_{rm QSO} rangle=3.75$, to virtual observations of the EAGLE cosmological hydrodynamical simulations. We employ the pixel optical depth method and uncover strong correlations between various combinations of HI, CIII, CIV, SiIII, SiIV, and OVI. We find good agreement between many of the simulated and observed correlations, including OVI(HI). However, the observed median optical depths for the CIV(HI) and SiIV(HI) relations are higher than those measured from the mock spectra. The discrepancy increases from up to $approx0.1$ dex at $tau_{rm HI}=1$ to $approx1$ dex at $tau_{rm HI}=10^2$, where we are likely probing dense regions at small galactocentric distances. As possible solutions, we invoke (a) models of ionizing radiation softened above 4 Ryd to account for delayed completion of HeII reionization; (b) simulations run at a higher resolution; (c) the inclusion of additional line broadening due to unresolved turbulence; and (d) increased elemental abundancess; however, none of these factors can fully explain the observed differences. Enhanced photoionization of HI by local sources, which was not modelled, could offer a solution. However, the much better agreement with the observed OVI(HI) relation, which we find probes a hot and likely collisionally-ionized gas phase, indicates that the simulations are not in tension with the hot phase of the IGM, and suggests that the simulated outflows may entrain insufficient cool gas.
We investigate the association between galaxies and metal-enriched and metal-deficient absorbers in the local universe ($z < 0.16$) using a large compilation of FUV spectra of bright AGN targets observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. In this homogeneous sample of 18 O VI detections at $N_{rm O,{VI}}geq13.5~mathrm{cm}^{-2}$ and 18 non-detections at $N_{rm O,{VI}}<13.5~mathrm{cm}^{-2}$ using Lya absorbers with ${N_{rm H,{I}}geq} 10^{14}~mathrm{cm}^{-2}$, the maximum distance O VI extends from galaxies of various luminosities is $sim0.6$ Mpc, or $sim5$ virial radii, confirming and refining earlier results. This is an important value that must be matched by numerical simulations, which input the strength of galactic winds at the sub-grid level. We present evidence that the primary contributors to the spread of metals into the circum- and intergalactic media are sub-$L^*$ galaxies ($0.25L^*<L<L^*$). The maximum distances that metals are transported from these galaxies is comparable to, or less than, the size of a group of galaxies. These results suggest that, where groups are present, the metals produced by the group galaxies do not leave the group. Since many O VI non-detections in our sample occur at comparably close impact parameters as the metal-bearing absorbers, some more pristine intergalactic material appears to be accreting onto groups where it can mix with metal-bearing clouds.
The circumgalactic medium (CGM) of galaxies serves as a record of the influences of outflows and accretion that drive the evolution of galaxies. Feedback from star formation drives outflows that carry mass and metals away from galaxies to the CGM, while infall from the intergalactic medium (IGM) is thought to bring in fresh gas to fuel star formation. Such exchanges of matter between IGM-CGM-galaxies have proven critical to producing galaxy scaling relations in cosmological simulations that match observations. However, the nature of these processes, of the physics that drives outflows and accretion, and their evolution with cosmic time are not fully characterized. One approach to constraining these processes is to characterize the metal enrichment of gas around and beyond galaxies. Measurements of the metallicity distribution functions of CGM/IGM gas over cosmic time provide independent tests of cosmological simulations. We have made great progress over the last decade as direct result of a very sensitive, high-resolution space-based UV spectrograph and the rise of ground-based spectroscopic archives. We argue the next transformative leap to track CGM/IGM metals during the epoch of galaxy formation and transformation into quiescent galaxies will require 1) a larger space telescope with an even more sensitive high-resolution spectrograph covering both the far- and near-UV (1,000-3,000 AA); and 2) ground-based archives housing science-ready data.
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis, as inferred from density fluctuations of the Cosmic Microwave Background and seen during the first 2-3 billion years of the universe in the so called Lyman-alpha Forest. A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas - hydrogen - is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios. Indeed, despite the large observational efforts, only a few marginal claims of detection have been made so far. Here we report observations of two absorbers of highly ionized oxygen (OVII) in the high signal-to-noise-ratio X-ray spectrum of a quasar at redshift >0.4. These absorbers show no variability over a 2-year timescale and have no associated cold absorption, making the assumption that they originate from the quasars intrinsic outflow or the host galaxys interstellar medium implausible. The OVII systems lie in regions characterized by large (x4 compared to average) galaxy over-densities and their number (down to the sensitivity threshold of our data), agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium (WHIM). We conclude that the missing baryons have been found.
We investigate the evolution of the galaxy Star Formation Rate Function (SFRF) and Cosmic Star Formation Rate Density (CSFRD) of $zsim 0-8 $ galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations. In addition, we present a compilation of UV, IR and H$alpha$ SFRFs and compare these with the predictions from the EAGLE suite of cosmological hydrodynamic simulations. We find that the constraints implied by different indicators are inconsistent with each other for the highest star-forming objects at z < 2, a problem that is possibly related to selection biases and the uncertainties of dust attenuation effects. EAGLEs feedback parameters were calibrated to reproduce realistic galaxy sizes and stellar masses at z = 0.1. In this work we test if and why those choices yield realistic Star Formation Rates (SFRs) for $z sim 0-8$ as well. We demonstrate that SNe feedback plays a major role at setting the abundance of galaxies at all star-forming regimes, especially at high redshifts. On the contrary, Active Galactic Nuclei (AGN) feedback becomes more prominent at lower redshifts and is a major mechanism that affects only the highest star-forming systems. Furthermore, we find that galaxies with SFR $sim 1-10 , {rm M_{odot} , yr^{-1}}$ dominate the CSFRD at redshifts z < 5, while rare high star-forming galaxies (SFR $sim 10-100 ,{rm M_{odot} , yr^{-1}}$) contribute significantly only briefly around the peak era ($z sim 2$) and then are quenched by AGN feedback. In the absence of this prescription objects with SFR $sim 10-100 ,{rm M_{odot} , yr^{-1}}$ would dominate the CSFRD, while the cosmic budget of star formation would be extremely high. Finally, we demonstrate that the majority of the cosmic star formation occurs in relatively rare high mass halos ($ {rm M_{Halo}} sim 10^{11-13} , {rm M_{odot}}$) even at the earliest epochs.
We use the eagle simulations to study the connection between the quenching timescale, $tau_{rm Q}$, and the physical mechanisms that transform star-forming galaxies into passive galaxies. By quantifying $tau_{rm Q}$ in two complementary ways - as the time over which (i) galaxies traverse the green valley on the colour-mass diagram, or (ii) leave the main sequence of star formation and subsequently arrive on the passive cloud in specific star formation rate (SSFR)-mass space - we find that the $tau_{rm Q}$ distribution of high-mass centrals, low-mass centrals and satellites are divergent. In the low stellar mass regime where $M_{star}<10^{9.6}M_{odot}$, centrals exhibit systematically longer quenching timescales than satellites ($approx 4$~Gyr compared to $approx 2$~Gyr). Satellites with low stellar mass relative to their halo mass cause this disparity, with ram pressure stripping quenching these galaxies rapidly. Low mass centrals are quenched as a result of stellar feedback, associated with long $tau_{rm Q}gtrsim 3$~Gyr. At intermediate stellar masses where $10^{9.7},rm M_{odot}<M_{star}<10^{10.3},rm M_{odot}$, $tau_{rm Q}$ are the longest for both centrals and satellites, particularly for galaxies with higher gas fractions. At $M_{star}gtrsim 10^{10.3},rm M_{odot}$, galaxy merger counts and black hole activity increase steeply for all galaxies. Quenching timescales for centrals and satellites decrease with stellar mass in this regime to $tau_{rm Q}lesssim2$~Gyr. In anticipation of new intermediate redshift observational galaxy surveys, we analyse the passive and star-forming fractions of galaxies across redshift, and find that the $tau_{rm Q}$ peak at intermediate stellar masses is responsible for a peak (inflection point) in the fraction of green valley central (satellite) galaxies at $zapprox 0.5-0.7$.