No Arabic abstract
Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. When using heralded single-photon sources based on parametric down-conversion, this approach offers an $sim e$-fold enhancement in the input state generation rate over scattershot boson sampling, reaching the scaling limit for such sources. More significantly, this approach offers a dramatic increase in the signal-to-noise ratio with respect to higher-order photon generation from such probabilistic sources, which removes the need for photon number resolution during the heralding process as the size of the system increases.
Universal quantum computers promise a dramatic speed-up over classical computers but a full-size realization remains challenging. However, intermediate quantum computational models have been proposed that are not universal, but can solve problems that are strongly believed to be classically hard. Aaronson and Arkhipov have shown that interference of single photons in random optical networks can solve the hard problem of sampling the bosonic output distribution which is directly connected to computing matrix permanents. Remarkably, this computation does not require measurement-based interactions or adaptive feed-forward techniques. Here we demonstrate this model of computation using high--quality laser--written integrated quantum networks that were designed to implement random unitary matrix transformations. We experimentally characterize the integrated devices using an in--situ reconstruction method and observe three-photon interference that leads to the boson-sampling output distribution. Our results set a benchmark for quantum computers, that hold the potential of outperforming conventional ones using only a few dozen photons and linear-optical elements.
Boson Sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require a universal control over the quantum system, which favours current photonic experimental platforms.Here, we introduce Gaussian Boson Sampling, a classically hard-to-solve problem that uses squeezed states as a non-classical resource. We relate the probability to measure specific photon patterns from a general Gaussian state in the Fock basis to a matrix function called the hafnian, which answers the last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson Sampling, a #P hard problem, using squeezed states. This approach leads to a more efficient photonic boson sampler with significant advantages in generation probability and measurement time over currently existing protocols.
Quantum advantage, benchmarking the computational power of quantum machines outperforming all classical computers in a specific task, represents a crucial milestone in developing quantum computers and has been driving different physical implementations since the concept was proposed. Boson sampling machine, an analog quantum computer that only requires multiphoton interference and single-photon detection, is considered to be a promising candidate to reach this goal. However, the probabilistic nature of photon sources and inevitable loss in evolution network make the execution time exponentially increasing with the problem size. Here, we propose and experimentally demonstrate a timestamp boson sampling that can reduce the execution time by 2 orders of magnitude for any problem size. We theoretically show that the registration time of sampling events can be retrieved to reconstruct the probability distribution at an extremely low-flux rate. By developing a time-of-flight storage technique with a precision up to picosecond level, we are able to detect and record the complete time information of 30 individual modes out of a large-scale 3D photonic chip. We successfully validate boson sampling with only one registered event. We show that it is promptly applicable to fill the remained gap of realizing quantum advantage by timestamp boson sampling. The approach associated with newly exploited resource from time information can boost all the count-rate-limited experiments, suggesting an emerging field of timestamp quantum optics.
Gaussian Boson sampling (GBS) provides a highly efficient approach to make use of squeezed states from parametric down-conversion to solve a classically hard-to-solve sampling problem. The GBS protocol not only significantly enhances the photon generation probability, compared to standard boson sampling with single photon Fock states, but also links to potential applications such as dense subgraph problems and molecular vibronic spectra. Here, we report the first experimental demonstration of GBS using squeezed-state sources with simultaneously high photon indistinguishability and collection efficiency. We implement and validate 3-, 4- and 5-photon GBS with high sampling rates of 832 kHz, 163 kHz and 23 kHz, respectively, which is more than 4.4, 12.0, and 29.5 times faster than the previous experiments. Further, we observe a quantum speed-up on a NP-hard optimization problem when comparing with simulated thermal sampler and uniform sampler.
Since its introduction Boson Sampling has been the subject of intense study in the world of quantum computing. The task is to sample independently from the set of all $n times n$ submatrices built from possibly repeated rows of a larger $m times n$ complex matrix according to a probability distribution related to the permanents of the submatrices. Experimental systems exploiting quantum photonic effects can in principle perform the task at great speed. In the framework of classical computing, Aaronson and Arkhipov (2011) showed that exact Boson Sampling problem cannot be solved in polynomial time unless the polynomial hierarchy collapses to the third level. Indeed for a number of years the fastest known exact classical algorithm ran in $O({m+n-1 choose n} n 2^n )$ time per sample, emphasising the potential speed advantage of quantum computation. The advantage was reduced by Clifford and Clifford (2018) who gave a significantly faster classical solution taking $O(n 2^n + operatorname{poly}(m,n))$ time and linear space, matching the complexity of computing the permanent of a single matrix when $m$ is polynomial in $n$. We continue by presenting an algorithm for Boson Sampling whose average-case time complexity is much faster when $m$ is proportional to $n$. In particular, when $m = n$ our algorithm runs in approximately $O(ncdot1.69^n)$ time on average. This result further increases the problem size needed to establish quantum computational supremacy via Boson Sampling.