Do you want to publish a course? Click here

Comparing submillimeter polarized emission with near-infrared polarization of background stars for the Vela C molecular cloud

100   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a large-scale combination of near-infrared (near-IR) interstellar polarization data from background starlight with polarized emission data at submillimeter (sub-mm) wavelengths for the Vela C molecular cloud. The near-IR data consist of more than 6700 detections probing a range of visual extinctions between $2$ and $20,$mag in and around the cloud. The sub-mm data was collected in Antartica by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This is the first direct combination of near-IR and sub-mm polarization data for a molecular cloud aimed at measuring the polarization efficiency ratio ($R_{mathrm{eff}}$), a quantity that is expected to depend only on grain intrinsic physical properties. It is defined as $p_{500}/(p_{I}/tau_{V})$, where $p_{500}$ and $p_{I}$ are polarization fractions at $500,mu$m and $I$-band, respectively, and $tau_{V}$ is the optical depth. To ensure that the same column density of material is producing both polarization from emission and from extinction, we conducted a careful selection of near-background stars using 2MASS, $Herschel$ and $Planck$ data. This selection excludes objects contaminated by the Galactic diffuse background material as well as objects located in the foreground. Accounting for statistical and systematic uncertainties, we estimate an average $R_{mathrm{eff}}$ value of $2.4pm0.8$, which can be used to test the predictions of dust grain models designed for molecular clouds when such predictions become available. $R_{mathrm{eff}}$ appears to be relatively flat as a function of the cloud depth for the range of visual extinctions probed.



rate research

Read More

Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500um during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850um data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at lambda ~350um as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.
We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol). We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 {mu}m. In this initial paper, we show our 500 {mu}m data smoothed to a resolution of 2.5 arcminutes (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p = p_0 N^(-0.4) S^(-0.6), where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations.
Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM and a troublesome contaminant for studies of CMB polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broad-band polarimetric maps of a translucent molecular cloud at 250, 350, and 500 microns. Combining these data with polarimetry from the Planck 850 micron band, we have produced a submillimeter polarization spectrum for a cloud of this type for the first time. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Comparing with models by Draine and Fraisse (2009), our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape compared to the diffuse ISM. Thus we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.
The cosmic near-infrared background (NIRB) offers a powerful integral probe of radiative processes at different cosmic epochs, including the pre-reionization era when metal-free, Population III (Pop III) stars first formed. While the radiation from metal-enriched, Population II (Pop II) stars likely dominates the contribution to the observed NIRB from the reionization era, Pop III stars -- if formed efficiently -- might leave characteristic imprints on the NIRB thanks to their strong Ly$alpha$ emission. Using a physically-motivated model of first star formation, we provide an analysis of the NIRB mean spectrum and anisotropy contributed by stellar populations at $z>5$. We find that in circumstances where massive Pop III stars persistently form in molecular cooling haloes at a rate of a few times $10^{-3},M_odot mathrm{yr}^{-1}$, before being suppressed towards the epoch of reionization (EoR) by the accumulated Lyman-Werner background, a unique spectral signature shows up redward of $1,mu$m in the observed NIRB spectrum sourced by galaxies at $z>5$. While the detailed shape and amplitude of the spectral signature depend on various factors including the star formation histories, IMF, LyC escape fraction and so forth, the most interesting scenarios with efficient Pop III star formation are within the reach of forthcoming facilities such as the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx). As a result, new constraints on the abundance and formation history of Pop III stars at high redshifts will be available through precise measurements of the NIRB in the next few years.
We present the polarization images in the $J$, $H$, & $Ks$ bands of the Orion Molecular Cloud 1 South region. The polarization images clearly show at least six infrared reflection nebulae (IRNe) which are barely seen or invisible in the intensity images. Our polarization vector images also identify the illuminating sources of the nebulae: IRN 1 & 2, IRN 3, 4, & 5, and IRN 6 are illuminated by three IR sources, Source 144-351, Source 145-356, and Source 136-355, respectively. Moreover, our polarization images suggest the candidate driving sources of the optical Herbig-Haro objects for the first time; HH529, a pair of HH202 and HH528 or HH 203/204, HH 530 and HH269 are originated from Source 144-351, Source 145-356, and Source 136-355, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا