Viable route towards large-area two dimensional MoS2 using magnetron sputtering


Abstract in English

Structural, interfacial, optical, and transport properties of large-area MoS2 ultra-thin films on BN-buffered silicon substrates fabricated using magnetron sputtering are investigated. A relatively simple growth strategy is demonstrated here that simultaneously promotes superior interfacial and bulk MoS2 properties. Few layers of MoS2 are established using X-ray reflectivity, diffraction, ellipsometry, and Raman spectroscopy measurements. Layer-specific modeling of optical constants shows very good agreement with first-principles calculations. Conductivity measurements reveal that few-layer MoS2 films are more conducting than many-layer films. Photo-conductivity measurements reveal that the sputter deposited MoS2 films compare favorably with other large-area methods. Our work illustrates that sputtering is a viable route for large-area device applications using transition metal dichalcogenides.

Download