No Arabic abstract
Structural, interfacial, optical, and transport properties of large-area MoS2 ultra-thin films on BN-buffered silicon substrates fabricated using magnetron sputtering are investigated. A relatively simple growth strategy is demonstrated here that simultaneously promotes superior interfacial and bulk MoS2 properties. Few layers of MoS2 are established using X-ray reflectivity, diffraction, ellipsometry, and Raman spectroscopy measurements. Layer-specific modeling of optical constants shows very good agreement with first-principles calculations. Conductivity measurements reveal that few-layer MoS2 films are more conducting than many-layer films. Photo-conductivity measurements reveal that the sputter deposited MoS2 films compare favorably with other large-area methods. Our work illustrates that sputtering is a viable route for large-area device applications using transition metal dichalcogenides.
We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimetre-scale chemical vapour deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.5A/W and the internal 570A/W at 642nm. This is at least two orders of magnitude higher than bulk-semiconductor flexible membranes and other flexible PDs based on graphene and layered materials. The photoconductive gain is up to 4x10^5. The photocurrent is in the 0.1-100 uA range. The devices are semi-transparent, with just 8% absorption at 642nm and work stably upon bending to a curvature of 6cm. These capabilities and the low voltage operation (<1V) make them attractive for wearable applications.
In the prospect of understanding the photoluminescence mechanisms of AlN films doped with erbium and targeting photonic applications we have synthesized non doped and Er-doped AlN films with different crystallized nanostructures by using PVD magnetron sputtering. Their crystalline morphology and their visible photoluminescence properties were precisely measured.Due to the weak cross-section absorption of rare earths like erbium, it is necessary to obtain an efficient energy transfer mechanism between the host matrix and the rare earth to obtain high luminescence efficiency. Our strategy is then to elaborate some nanostructures that could introduce additional intermediate electronic levels within the gap thanks to the presence of structural defects (point defects, grain boundaries{ldots}) and could lead to energy transfer from the AlN matrix to the rare earth.Doped and non-doped AlN films were prepared by radio frequency magnetron sputtering by using different experimental conditions that will be detailed. It will notably be shown how a negative polarization of samples during deposition allows obtaining crystalline morphologies ranging from the classical columnar structure to a highly disordered polycrystalline structure with grains of several nanometers (nearly amorphous). The nanostructures of the films could be categorized in three types: 1) type 1 was nanocolumnar (width of column ~ 15 nm), 2) type 2 was made of short columns (width of column ~ 10 nm) and 3) the last type was made of equiaxed nanocrystallites (size of grains ~3-4 nm).High-resolution photoluminescence spectroscopy was performed to characterize their optical behaviour. The samples were excited by the laser wavelengths at 458, 488 or 514 nm. A broad photoluminescence band was observed centred around 520 nm in columnar samples. In the same energy range, the highly resolved spectra also showed several sharp emission peaks. This fine structure could be attributed to erbium transitions. This fine structure tended to disappear going from type 1 to type 3 samples. Indeed, the relative intensity of the peaks decreased and their full width at half maximum increased. This change could be related to the density of defects that increased when the size of the grains decreased. The photoluminescence properties of the films in the visible range will be discussed in relation with their structure.
The effect of magnetron power on the room temperature 1.54 $mu$m infra-red photoluminescence intensity of erbium doped AlN films grown by r. f. magnetron sputtering, has been studied. The AlN:Er thin films were deposited on (001) Silicon substrates. The study presents relative photoluminescence intensities of nanocrystallized samples prepared with identical sputtering parameters for two erbium doping levels (0.5 and 1.5 atomic %). The structural evolution of the crystallites as a function of the power is followed by transmission electron microscopy. Copyright line will be provided by the publisher 1 Introduction For some time now, rare-earth (RE)-doped semiconductors represent significant potential applications in the field of opto-electronic technology. Part of this technological interest relies on the shielded 4f levels of the RE ions as they give rise to sharp and strong luminescence peaks [1-5]. Among the RE elements, Er is preferred to its counterparts since the Er ions can produce both visible light at 558 nm (green, one of the primary colours) and IR light at 1.54 $mu$m whose spectrum region coincides with the main low-loss region in the absorption spectrum of silica-based optical fibres, combining so potential applications towards photonic devices and towards optical communication devices operating in the infrared domain. These interesting emissions can however only be exploited when placed into host matrixes. On one side, the shielding of the intra 4f levels prevents the shifting of the RE 3+ energy levels and ensures the frequency emission stability. Moreover the intra 4f transitions are parity forbidden for the isolated ions. Matrixes can render the Er 3+ ions optically active, via a relaxation of selection rules due to crystal field effects. As silicon based materials were tested in the 1960s to the 90s with no clear industrial success it was found that the
Er-doped aluminum nitride films, containing different Er concentrations, were obtained at room temperature by reactive radio frequency magnetron sputtering. The prepared samples show a nano-columnar microstructure and the size of the columns is dependent on the magnetron power. The Er-related photoluminescence (PL) was studied in relation with the temperature, the Er content and the microstructure. Steady-state PL, PL excitation spectroscopy and time-resolved PL were performed. Both visible and near infrared PL were obtained at room temperature for the as-deposited samples. It is demonstrated that the PL intensity reaches a maximum for an Er concentration equal to 1 at. % and that the PL efficiency is an increasing function of the magnetron power. Decay time measurements show the important role of defect related non radiative recombination, assumed to be correlated to the presence of grain boundaries. Moreover PL excitation results demonstrate that an indirect excitation of Er 3+ ions occurs for excitation wavelengths lower than 600 nm. It is also suggested that Er ions occupy at least two different sites in the AlN host matrix.
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. While significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.