Radii of starlikeness and convexity of regular Coulomb wave functions


Abstract in English

In this paper our aim is to determine the radii of univalence, starlikeness and convexity of the normalized regular Coulomb wave functions for two different kinds of normalization. The key tools in the proof of our main results are the Mittag-Leffler expansion for regular Coulomb wave functions, and properties of zeros of the regular Coulomb wave functions and their derivatives. Moreover, by using the technique of differential subordinations we present some conditions on the parameters of the regular Coulomb wave function in order to have a starlike normalized form. In addition, by using the Euler-Rayleigh inequalities we obtain some tight bounds for the radii of starlikeness of the normalized regular Coulomb wave functions. Some open problems for the zeros of the regular Coulomb wave functions are also stated which may be of interest for further research.

Download