In order to carry out research in the field of possible existence of sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core carried out with movable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. A moveable detector, protected with passive shielding from outer radiation, can be set at distance range 6 to 12 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The main difficulties of the measurements caused by cosmic background and it heavily decreases the precision of measurements. We present the analysis of measurements at small distances together with the data obtained in measurements at long distances in order to obtain parameters of sterile neutrino.
The experiment Neutrino-4 started in 2014 on a model, then it was continued on a full-scale detector, and now, has provided the measurement result on dependence of the flux and spectrum of reactor antineutrinos on the distance of 6 - 12 meters from the center of the reactor. One of the main problems is the correlated background from fast neutrons caused by space radiation. Attempts to suppress the background of fast neutrons by sectioning the detector have given some result. The relation of effect/background has improved up to 0.6. As a result, measurements of the difference in the counting rate of neutrino-like events (reactor ON - reactor OFF) have been obtained as dependence on distance from the reactor center. The fit of experimental dependence with the law $1/L^2$ give satisfactory result. The goodness of that fit is 81%. However, there was discovered experimental neutrino spectrum difference from calculated one. With achieved accuracy this difference does not change with distance. Therefore it cannot be interpreted as oscillations. Calculated spectrum form correction for experimental allow us to make proper analysis of oscillation parameters $Delta m^2_{14}$ and $sin^2(2theta)$ limitations. Result of this analysis is exclusion of reactor and gallium anomalies area with 95% CL. Experiment future perspectives are discussed.
The experiment Neutrino-4 had started in 2014 with a detector model and then was continued with a full-scale detector in 2016 - 2021. In this article we describe all steps of preparatory work on this experiment. We present all results of the Neutrino-4 experiment with increased statistical accuracy provided to date. The experimental setup is constructed to measure the flux and spectrum of the reactor antineutrinos as a function of distance to the center of the active zone of the SM-3 reactor (Dimitrovgrad, Russia) in the range of 6 - 12 meters. Using all the collected data, we performed a model-independent analysis to determine the oscillation parameters $Delta m_{14}^2$ and $sin^22theta_{14}$. The method of coherent summation of measurement results allows to directly demonstrate the oscillation effect. We present the analysis of possible systematic errors and the MC model of the experiment, which considers the possibility of the effect manifestation at the present precision level. As a result of the analysis, we can conclude that at currently available statistical accuracy we observe the oscillations at the $2.9sigma$ level with parameters $Delta m_{14}^2=(7.3pm0.13_{st}pm1.16_{sys})text{eV}^2 = (7.3pm1.17)text{eV}^2$ and $sin^22theta_{14}= 0.36pm0.12_{stat}(2.9sigma)$. Monte Carlo based statistical analysis gave estimation of confidence level at $2.7sigma$. We plan to improve the currently working experimental setup and create a completely new setup in order to increase the accuracy of the experiment by 3 times. We also provide a brief analysis of the general experimental situation in the search for sterile neutrinos.
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Antineutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
We propose a new experiment to search for a sterile neutrino in a few keV mass range at the Troitsk nu-mass facility. The expected signature corresponds to a kink in the electron energy spectrum in tritium beta-decay. The new goal compared to our previous experiment will be precision spectrum measurements well below end point. The experimental installation consists of a windowless gaseous tritium source and a high resolution electromagnetic spectrometer. We estimate that the current bounds on the sterile neutrino mixing parameter can be improved by an order of magnitude in the mass range under 5 keV without major upgrade of the existing equipment. Upgrades of calibration, data acquisition and high voltage systems will allow to improve the bounds by another order of magnitude.
A. P. Serebrov
,V. G. Ivochkin
,R. M. Samoilov
.
(2016)
.
"Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector"
.
Anatoly Serebrov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا