No Arabic abstract
Single photon avalanche diodes (SPADs) are the most commercially diffused solution for single-photon counting in quantum key distribution (QKD) applications. However, the secondary photon emission, arising from the avalanche of charge carriers during a photon detection, may be exploited by an eavesdropper to gain information without forcing errors in the transmission key. In this paper, we characterise such backflash light in gated InGaAs/InP SPADs, and its spectral and temporal characterization for different detector models and different operating parameters. We qualitatively bound the maximum information leakage due to backflash light, and propose a solution.
We consider an error model for quantum computing that consists of contagious quantum germs that can infect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent error with the technique of quantum teleportation. The construction, which was previously described by Knill, is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider the restriction of bounded quantum depth from the point of view of quantum complexity classes.
We study the possible difference between the quantum and the private capacities of a quantum channel in the zero-error setting. For a family of channels introduced by arXiv:1312.4989, we demonstrate an extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is maximum given the quantum output dimension.
We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a quantum distinguishing algorithm can output any state, as long as the output states for any 0-input and 1-input are distinguishable. Using this measure, we establish a new relationship in query complexity: For all total functions f, Q_0(f)=O~(Q(f)^5), where Q_0(f) and Q(f) denote the zero-error and bounded-error quantum query complexity of f respectively, improving on the previously known sixth power relationship. We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f), which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(f) also upper bounds the (positive-weights) adversary bound, which yields the following relationships for all f: Q(f) >= QSZK(f) >= QS(f) = Omega(Adv(f)). This sheds some light on why the adversary bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK complexity. Lastly, we show implications for lifting theorems in communication complexity. We show that a general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a general lifting theorem for bounded-error quantum query complexity.
Given one or more uses of a classical channel, only a certain number of messages can be transmitted with zero probability of error. The study of this number and its asymptotic behaviour constitutes the field of classical zero-error information theory, the quantum generalisation of which has started to develop recently. We show that, given a single use of certain classical channels, entangled states of a system shared by the sender and receiver can be used to increase the number of (classical) messages which can be sent with no chance of error. In particular, we show how to construct such a channel based on any proof of the Bell-Kochen-Specker theorem. This is a new example of the use of quantum effects to improve the performance of a classical task. We investigate the connection between this phenomenon and that of ``pseudo-telepathy games. The use of generalised non-signalling correlations to assist in this task is also considered. In this case, a particularly elegant theory results and, remarkably, it is sometimes possible to transmit information with zero-error using a channel with no unassisted zero-error capacity.
Quantum key distribution (QKD) promises information theoretic secure key as long as the device performs as assumed in the theoretical model. One of the assumptions is an absence of information leakage about individual photon detection outcomes of the receiver unit. Here we investigate the information leakage from a QKD receiver due to photon emission caused by detection events in single-photon detectors (backflash). We test commercial silicon avalanche photodiodes and a photomultiplier tube, and find that the former emit backflashes. We study the spectral, timing and polarization characteristics of these backflash photons. We experimentally demonstrate on a free-space QKD receiver that an eavesdropper can distinguish which detector has clicked inside it, and thus acquire secret information. A set of countermeasures both in theory and on the physical devices are discussed.