Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge$_{1-x}$Mn$_x$Te


Abstract in English

Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) - is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures $T_{rm c}$ of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum $T_{rm c} approx 180$ K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-$T_{rm c}$ phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change- memory functionality.

Download