Do you want to publish a course? Click here

Chromatographic separation of radioactive noble gases from xenon

117   0   0.0 ( 0 )
 Added by Chang Lee
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes $^{85}$Kr and $^{39}$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.



rate research

Read More

Noble gas permeabilities and diffusivities of Kapton, butyl, nylon, and Silver Shield are measured at temperatures between 22C and 115C. The breakthrough times and solubilities at 22C are also determined. The relationship of the room temperature permeabilities to the noble gas atomic radii is used to estimate radon permeability for each material studied. For the noble gases tested, Kapton and Silver Shield have the lowest permeabilities and diffusivities, followed by nylon and butyl, respectively.
Dielectric breakdown strength is one of the critical performance metrics for gases and mixtures used in large, high pressure gas time projection chambers. In this paper we experimentally study dielectric breakdown strengths of several important time projection chamber working gases and gas-phase insulators over the pressure range 100 mbar to 10 bar, and gap sizes ranging from 0.1to 10 mm. Gases characterized include argon, xenon, CO2, CF4, and mixtures 90-10 argon-CH4,90-10 argon-CO2and 99-1 argon-CF4. We develop a theoretical model for high voltage breakdown based on microphysical simulations that use PyBoltz electron swarm Monte Carlo results as input to Townsend- and Meek-like discharge criteria. This model is shown to be highly predictive at high pressure, out-performing traditional Paschen-Townsend and Meek-Raether models significantly. At lower pressure-times-distance, the Townsend-like model is an excellent description for noble gases whereas the Meek-like model provides a highly accurate prediction for insulating gases.
Noble gases and liquids are excellent scintillators and this opens a unique opportunity to directly detect the primary scintillation light produced in these media by photons or particles. This signal can be used for several purposes, for example as a start signal for TPCs or for particles identification. Usually photomultipliers (PMs) are used for the detection of the scintillation light. In our previous work we have demonstrated that costly PMs could be replaced by gaseous detectors with CsI photocathodes . Such detectors have the same quantum efficiency as the best PMs but at the same time are cheap, simple and have high position and time resolutions. The aim of this work is to evaluate various planar type gaseous detectors with CsI photocahodes in order to choose the best one for the detection of the primary scintillation light from noble gases and liquids.
A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed.
High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which have not been well characterized in high pressure noble gas environments. As HPGTPCs are scaled up in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes the identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in Argon and Xenon, including studying absorption, swelling and high voltage insulation strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا