The strain effect on electronic structure and thermoelectric properties of Higher Manganese Silicides (HMSs) Mn4Si7 was studied using Density Functional Theory (DFT) and through solving Boltzman Transport Equation (BTE). We found that the tensile strain attempts to reduce the band gap while the compressive strain not much affect to band gap. The Seebeck coeficient was found to be increased with increasing temperature, which is very consistent to experiments. The electrical conductivity and power factor show highly degree of anisotropy, where in-plane direction is more dominant. The different behavior of electrical conductivity along in-plane and outof plane direction was explained due to the change of band dispersion in the valence band maximum (VBM).
We perform first principles simulations for the structural, elastic and electronic properties of orthorhombic samarium orthoferrite $SmFeO_3$ within the framework of density functional theory. A number of different density functionals, such as local density approximation, generalized gradient approximation, Hubbard interaction modified functional, modified Becke$-$Johnson approximation and Heyd$-$Scuseria$-$Ernzerhof hybrid functional have been used to model the exact electron exchange-correlation. We estimate the energy of the ground state for different magnetic configurations of $SmFeO_3$. The crystal structure of $SmFeO_3$ is characterized in terms of the lattice parameters, atomic positions, relevant ionic radii, bond lengths and bond angles. The stability of the $SmFeO_3$ orthorhombic structure is simulated in terms of its elastic properties. For the electronic structure simulations, we provide estimates based on density functionals with varying degrees of computational complexities in the Jacobs ladder.
We discuss the structural and electronic properties of tetragonal CuO grown on SrTiO3(100) by means of hybrid density functional theory. Our analysis explains the anomalously large Cu-O vertical distance observed in the experiments (~2.7 A) in terms of a peculiar frustration between two competing local Cu-O environments characterized by different in-plane and out-of-plane bond lengths and Cu electronic populations. The proper inclusion of substrate effects is crucial to understand the tetragonal expansion and to reproduce correctly the measured valence band spectrum for a CuO thickness of 3-3.5 unit cells, in agreement with the experimentally estimated thickness.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfaces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale first principles simulations and capture effects of different surface reconstructions by using DFT calculations with a machine-learned Hubbard U correction [npj Comput. Mater. 6, 180 (2020)]. To facilitate direct comparison with ARPES results, we implemented a bulk unfolding scheme by projecting the calculated band structure of a supercell surface slab model onto the bulk primitive cell. For all three surfaces, we find a good agreement between DFT calculations and ARPES. For InAs(001), the simulations clarify the effect of the surface reconstruction. Different reconstructions are found to produce distinctive surface states. For InAs(111) and InSb(110), the simulations help elucidate the effect of oxidation. Owing to larger charge transfer from As to O than from Sb to O, oxidation of InAs(111) leads to significant band bending and produces an electron pocket, whereas oxidation of InSb(110) does not. Our combined theoretical and experimental results may inform the design of quantum devices based on InAs and InSb semiconductors, e.g., topological qubits utilizing the Majorana zero modes.
Ab initio calculations using the local spin density approximation and also including the Hubbard $U$ have been performed for three low energy configurations of the interface between LaAlO$_3$ and TiO$_2$-anatase. Two types of interfaces have been considered: LaO/TiO$_2$ and AlO$_2$/TiO, the latter with Ti-termination and therefore a missing oxygen. A slab-geometry calculation was carried out and all the atoms were allowed to relax in the direction normal to the interface. In all the cases considered, the interfacial Ti atom acquires a local magnetic moment and its formal valence is less than +4. When there are oxygen vacancies, this valence decreases abruptly inside the anatase slab while in the LaO/TiO$_2$ interface the changes are more gradual.
Do Duc Cuong
,JinSik Park
,S. H. Rhim
.
(2016)
.
"Density Functional Theory study on the electronic structure and thermoelectric properties of strained Mn4Si7"
.
Duc Cuong Do
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا