Do you want to publish a course? Click here

Experimental studies of crystal nucleation: metals and colloids

93   0   0.0 ( 0 )
 Added by Thomas Palberg
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. We demonstrate the power of these methods for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the issue of heterogeneous versus homogeneous nucleation and non-equilibrium conditions. The results are analyzed within classical nucleation theory, where the activation energy of homogeneous nucleation depends on the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the use of colloidal suspensions as models for the crystallization process. Their nucleation process is observed in situ by optical techniques and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.



rate research

Read More

Intercalation of different species under graphene on metals is an effective way to tailor electronic properties of these systems. Here we present the successful intercalation of metallic (Cu) and gaseous (oxygen) specimens underneath graphene on Ir(111) and Ru(0001), respectively, that allows to change the charge state of graphene as well as to modify drastically its electronic structure in the vicinity of the Fermi level. We employ ARPES and STS spectroscopic methods in combination with state-of-the-art DFT calculations in order to illustrate how the energy dispersion of graphene-derived states can be studied in the macro- and nm-scale experiments.
Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over experimental (finite) time-scale for the range of phase diagram with high values of pressure. We show that the structural ordering in glasses at such conditions is initiated through the nucleation mechanism, and the mechanism spreads to the states at extremely deep levels of supercooling. We find that the scaled values of the nucleation time, $tau_1$ (average waiting time of the first nucleus with the critical size), in glassy systems as a function of the reduced temperature, $widetilde{T}$, are collapsed onto a single line reproducible by the power-law dependence. This scaling is supported by the simulation results for the model glassy systems for a wide range of temperatures as well as by the experimental data for the stoichiometric glasses at the temperatures near the glass transition.
Interpretation of thermal hardening phenomenon at high strain rate has recently become a critical problem in shock wave physics. In this letter, this problem is addressed from a viewpoint of dislocation generation, and a novel conclusion is gained that forest hardening induced by homogeneous nucleation (HN) results in thermal hardening behavior in a BCC metal significantly, apart from phonon drag mechanism. Through numerical simulations with a dislocation based crystal plasticity model, we have reproduced the experimental results quantitatively and predicted a thermal hardening behavior in other BCC metals, i.e., Mo, at higher temperature.
Nucleation and growth of crystal in an oxide glass was studied in a Si B Al Zr Nd Ca Na O system. The nucleation and growth process was monitored by thermal analysis and isothermal experiments. For the Ca sample the crystallization is homogeneous in the bulk showing a slow increase of crystallinity as temperature increases. The Na rich sample on the other hand go through several crystallization process in the bulk or from the surface, leading to bigger crystals. The activation energy of the viscous flow and the glass transition are of same magnitude when that of crystallization is a lot smaller. Early diffusion of element is done with a mechanism different than the configurational rearrangements of the liquid sate. The global density and small shape of the crystals within the Ca rich matrix confirmed that it would be a profitable waste form for minor actinides.
Delafossites are promising candidates for photocatalysis applications because of their chemical stability and absorption in the solar region of the electromagnetic spectrum. For example, CuAlO2 has good chemical stability but has a large indirect bandgap (~3 eV), so that efforts to improve its absorption in the solar region through alloying are investigated. The effect of dilute alloying on the optical absorption of powdered CuAl1-xFexO2 (x = 0.0-1.0) is measured and compared to electronic band structures calculations using a generalized gradient approximation with Hubbard exchange-correlation parameter and spin. A new absorption feature is observed at 1.8 eV for x = 0.01, which redshifts to 1.4 eV for x = 0.10. This feature is associated with transitions from the L-point valence band maximum to the Fe-3d state that appears below the conduction band of the spin-down band structure. The feature increases the optical absorption below the bandgap of pure CuAlO2, making dilute CuAl1-xFexO2 alloys better suited for solar photocatalysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا