No Arabic abstract
The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption may not always be fulfilled. An alternative approach for survival prediction is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistics, which favors splitting variables with many possible split points. Conditional inference forests avoid this split variable selection bias. However, linear rank statistics are utilized by default in conditional inference forests to select the optimal splitting variable, which cannot detect non-linear effects in the independent variables. An alternative is to use maximally selected rank statistics for the split point selection. As in conditional inference forests, splitting variables are compared on the p-value scale. However, instead of the conditional Monte-Carlo approach used in conditional inference forests, p-value approximations are employed. We describe several p-value approximations and the implementation of the proposed random forest approach. A simulation study demonstrates that unbiased split variable selection is possible. However, there is a trade-off between unbiased split variable selection and runtime. In benchmark studies of prediction performance on simulated and real datasets the new method performs better than random survival forests if informative dichotomous variables are combined with uninformative variables with more categories and better than conditional inference forests if non-linear covariate effects are included. In a runtime comparison the method proves to be computationally faster than both alternatives, if a simple p-value approximation is used.
We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortality that can be used as a predicted outcome. Several illustrative examples are given, including a case study of the prognostic implications of body mass for individuals with coronary artery disease. Computations for all examples were implemented using the freely available R-software package, randomSurvivalForest.
Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to divide-and-conquer approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations.
Random forest (RF) methodology is one of the most popular machine learning techniques for prediction problems. In this article, we discuss some cases where random forests may suffer and propose a novel generalized RF method, namely regression-enhanced random forests (RERFs), that can improve on RFs by borrowing the strength of penalized parametric regression. The algorithm for constructing RERFs and selecting its tuning parameters is described. Both simulation study and real data examples show that RERFs have better predictive performance than RFs in important situations often encountered in practice. Moreover, RERFs may incorporate known relationships between the response and the predictors, and may give reliable predictions in extrapolation problems where predictions are required at points out of the domain of the training dataset. Strategies analogous to those described here can be used to improve other machine learning methods via combination with penalized parametric regression techniques.
Random forests is a common non-parametric regression technique which performs well for mixed-type data and irrelevant covariates, while being robust to monotonic variable transformations. Existing random forest implementations target regression or classification. We introduce the RFCDE package for fitting random forest models optimized for nonparametric conditional density estimation, including joint densities for multiple responses. This enables analysis of conditional probability distributions which is useful for propagating uncertainty and of joint distributions that describe relationships between multiple responses and covariates. RFCDE is released under the MIT open-source license and can be accessed at https://github.com/tpospisi/rfcde . Both R and Pyth
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variables--that is, under true implementation of the methodology. A key assumption made is that all variables are factors. Although this assumes that the feature space has finite cardinality, in practice the space can be a extremely large--indeed, current computational procedures do not properly deal with this setting. An indirect consequence of this work is the introduction of new computational methodology for dealing with factors with unlimited number of labels.