No Arabic abstract
We study the properties of 975 active galactic nuclei (AGN) selected by variability in the Pan-STARRS1 Medium-Deep Survey. Using complementary multi wavelength data from the ultraviolet to the far-infrared, we use SED fitting to determine the AGN and host properties at $z<1$, and compare to a well-matched control sample. We confirm the trend previously observed that the variability amplitude decreases with AGN luminosity, but on the other hand, we observe that the slope of this relation steepens with wavelength resulting in a redder when brighter trend at low luminosities. Our results show that AGN are hosted by more massive hosts than control sample galaxies, while the restframe, dust-corrected $NUV-r$ color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the whole range of SFRs within and outside the Main Sequence of star forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies, but more likely to be hosted by Main Sequence or starburst galaxies.
[abridged] We present the results of a pilot study for the extended MACS survey (eMACS), a comprehensive search for distant, X-ray luminous galaxy clusters at z>0.5. Our pilot study applies the eMACS concept to the 71 deg^2 area extended by the ten fields of the Pan-STARRS1 (PS1) Medium Deep Survey (MDS). Candidate clusters are identified by visual inspection of PS1 images in the g,r, i, and z bands in a 5x5 arcmin^2 region around X-ray sources detected in the ROSAT All-Sky Survey (RASS). To test and optimize the eMACS X-ray selection criteria, our pilot study uses the largest possible RASS database, i.e., all RASS sources listed in the Bright and Faint Source Catalogs (BSC and FSC) that fall within the MDS footprint. Scrutiny of PS1/MDS images for 41 BSC and 200 FSC sources combined with dedicated spectroscopic follow-up observations results in a sample of 11 clusters with estimated or spectroscopic redshifts of z>0.3. X-ray follow-up observations will be crucial in order to establish robust cluster luminosities for eMACS clusters. Although the small number of distant X-ray luminous clusters in the MDS does not allow us to make firm predictions for the over 20,000 deg^2 of extragalactic sky covered by eMACS, the identification of two extremely promising eMACS cluster candidates at z>0.6 (both yet to be observed with Chandra) in such a small solid angle is encouraging. Representing a tremendous gain over the presently known two dozen such systems from X-ray, optical, and SZ cluster surveys combined, the sample of over 100 extremely massive clusters at z>0.5 expected from eMACS would be invaluable for the identification of the most powerful gravitational lenses in the Universe, as well as for in-depth and statistical studies of the physical properties of the most massive galaxy clusters out to z~1.
We analyze the wavelength-dependent variability of a sample of spectroscopically confirmed active galactic nuclei (AGN) selected from near-UV ($NUV$) variable sources in the GALEX Time Domain Survey that have a large amplitude of optical variability (difference-flux S/N $>$ 3) in the Pan-STARRS1 Medium Deep Survey (PS1 MDS). By matching GALEX and PS1 epochs in 5 bands ($NUV$, $g_{P1}$, $r_{P1}$, $i_{P1}$, $z_{P1}$) in time, and taking their flux difference, we create co-temporal difference-flux spectral energy distributions ($Delta f$SEDs) using two chosen epochs for each of the 23 objects in our sample on timescales of about a year. We confirm the bluer-when-brighter trend reported in previous studies, and measure a median spectral index of the $Delta f$SEDs of $alpha_{lambda}$ = 2.1 that is consistent with an accretion disk spectrum. We further fit the $Delta f$SEDs of each source with a standard accretion disk model in which the accretion rate changes from one epoch to the other. In our sample, 17 out of 23 ($sim$74 %) sources are well described by this variable accretion-rate disk model, with a median average characteristic disk temperature $bar{T}^*$ of $1.2times 10^5$~K that is consistent with the temperatures expected given the distribution of accretion rates and black hole masses inferred for the sample. Our analysis also shows that the variable accretion rate model is a better fit to the $Delta f$SEDs than a simple power law.
We present a systematic search for periodically varying quasar and supermassive black hole binary (SMBHB) candidates in the Pan-STARRS1 Medium Deep Survey. From $sim9,000$ color-selected quasars in a $sim50$ deg$^{2}$ sky area, we initially identify $26$ candidates with more than $1.5$ cycles of variation. We extend the baseline of observations via our imaging campaign with the Discovery Channel Telescope and the Las Cumbres Observatory network and reevaluate the candidates using a more rigorous, maximum likelihood method. Using a range of statistical criteria and assuming the Damped Random Walk model for normal quasar variability, we identify one statistically significant periodic candidate. We also investigate the capabilities of detecting SMBHBs by the Large Synoptic Survey Telescope using our study with MDS as a benchmark and explore any complementary, multiwavelength evidence for SMBHBs in our sample.
We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for which the spectroscopic redshift is obtained from SDSS, and magnitudes and colours are obtained from the Pan-STARRS1 Data Release 2 survey. The photometric redshift of a galaxy is then estimated by means of a local linear regression in a 5-dimensional magnitude and colour space. Our method achieves an average bias of $overline{Delta z_{rm norm}}=-2.01 times 10^{-4}$, a standard deviation of $sigma(Delta z_{rm norm})=0.0298$, and an outlier rate of $P_o=4.32%$ when cross-validating on the training set. Even though the relation between each of the Pan-STARRS1 colours and the spectroscopic redshifts is noisier than for SDSS colours, the results obtained by our method are very close to those yielded by SDSS data. The proposed method has the additional advantage of allowing the estimation of photometric redshifts on a larger portion of the sky ($sim 3/4$ vs $sim 1/3$). The training set and the code implementing this method are publicly available at www.testaddress.com.
Changing-look Active Galactic Nuclei (CL-AGNs) are a subset of AGNs in which the broad Balmer emission lines appear or disappear within a few years. We use the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to identify five CL-AGNs. The 2-D photometric and kinematic maps reveal common features as well as some unusual properties of CL-AGN hosts as compared to the AGN hosts in general. All MaNGA CL-AGNs reside in the star-forming main sequence, similar to MaNGA non-changing-look AGNs (NCL-AGNs). The $80% pm 16%$ of our CL-AGNs do possess pseudo-bulge features, and follow the overall NCL-AGNs $M_{BH}-sigma_{*}$ relationship. The kinematic measurements indicate that they have similar distributions in the plane of angular momentum versus galaxy ellipticity. MaNGA CL-AGNs however show a higher, but not statistically significant ($20% pm 16%$) fraction of counter-rotating features compared to that ($1.84% pm 0.61%$) in general star-formation population. In addition, MaNGA CL-AGNs favor more face-on (axis ratio $>$ 0.7) than that of Type I NCL-AGNs. These results suggest that host galaxies could play a role in the CL-AGN phenomenon.