We introduce a coupled-layer construction to describe three-dimensional topological crystalline insulators protected by reflection symmetry. Our approach uses stacks of weakly-coupled two-dimensional Chern insulators to produce topological crystalline insulators in one higher dimension, with tunable number and location of surface Dirac cones. As an application of our formalism, we turn to a simplified model of topological crystalline insulator SnTe, showing that its protected surface states can be described using the coupled layer construction.