We report Raman light scattering in the phase separated superconducting single crystal Rb0.77Fe1.61Se2 with Tc = 32 K. The spectra have been measured in a wide temperature range 3K -500K. The observed phonon lines from the majority vacancy ordered Rb2Fe4Se5 (245) antiferromagnetic phase with TN= 525 K demonstrate modest anomalies in frequency, intensity and halfwidth at the superconductive phase transition. We identify phonon lines from the minority compressed Rb{delta}Fe2Se2 (122) conductive phase. The superconducting gap with dx2-y2 symmetry is also detected in our spectra. In the range 0-600 cm-1 we observed the low intensive but highly polarized B1g-type background which becomes well structured under cooling. The possible magnetic or multiorbital origin of this background has been discussed. We argue that phase separation in M0.8+xFe1.6+ySe2 has pure magnetic origin. It occurs below Neel temperature when iron magnetic moment achieves some critical magnitude. We state that there is a spacer between the majority 245 and minority 122 phases. Using ab-initio spin polarized band structure calculations we demonstrate that compressed vacancy ordered Rb2Fe4Se5 phase can be conductive and therefore may serve as a protective interface spacer between the pure metallic Rb{delta}Fe2Se2 phase and the insulating Rb2Fe4Se5 phase providing the percolative Josephson-junction like superconductivity in the whole sample of Rb0.8+xFe1.6+ySe2 Our lattice dynamics calculations show significant difference in the phonon spectra of the conductive and insulating Rb2Fe4.Se5 phases.