Kinetics of separation between the low and high density phases in a single component Lennard-Jones model has been studied via molecular dynamics simulations, at a very low temperature, in the space dimension $d=2$. For densities close to the vapor (low density) branch of the coexistence curve, disconnected clusters of the high density phase exhibit ballistic motion, the kinetic energy distribution of the clusters being closely Maxwellian. Starting from nearly circular shapes, at the time of nucleation, these clusters grow via sticky collisions, gaining filament-like nonequilibrium structure at late times, with a very low fractal dimensionality. The origin of the latter is shown to lie in the low mobility of the constituent particles, in the corresponding cluster reference frame, due to the (quasi-long-range) crystalline order. Standard self-similarity in the domain pattern, typically observed in kinetics of phase transitions, is found to be absent in this growth process. This invalidates the common method, that provides a growth law same as in immiscible solid mixtures, of quantifying growth. An appropriate alternative approach, involving the fractality in the structure, quantifies the growth of the characteristic length to be a power-law with time, the exponent being surprisingly high. The observed growth law has been derived via a nonequilibrium kinetic theory.