No Arabic abstract
Full charge capacity (FCC) refers to the amount of energy a battery can hold. It is the fundamental property of smartphone batteries that diminishes as the battery ages and is charged/discharged. We investigate the behavior of smartphone batteries while charging and demonstrate that the battery voltage and charging rate information can together characterize the FCC of a battery. We propose a new method for accurately estimating FCC without exposing low-level system details or introducing new hardware or system modules. We also propose and implement a collaborative FCC estimation technique that builds on crowdsourced battery data. The method finds the reference voltage curve and charging rate of a particular smartphone model from the data and then compares the curve and rate of an individual user with the model reference curve. After analyzing a large data set, we report that 55% of all devices and at least one device in 330 out of 357 unique device models lost some of their FCC. For some models, the median capacity loss exceeded 20% with the inter-quartile range being over 20 pp. The models enable debugging the performance of smartphone batteries, more accurate power modeling, and energy-aware system or application optimization.
This paper proposes a new equivalent circuit model for rechargeable batteries by modifying a double-capacitor model proposed in [1]. It is known that the original model can address the rate capacity effect and energy recovery effect inherent to batteries better than other models. However, it is a purely linear model and includes no representation of a batterys nonlinear phenomena. Hence, this work transforms the original model by introducing a nonlinear-mapping-based voltage source and a serial RC circuit. The modification is justified by an analogy with the single-particle model. Two parameter estimation approaches, termed 1.0 and 2.0, are designed for the new model to deal with the scenarios of constant-current and variable-current charging/discharging, respectively. In particular, the 2.0 approach proposes the notion of Wiener system identification based on maximum a posteriori estimation, which allows all the parameters to be estimated in one shot while overcoming the nonconvexity or local minima issue to obtain physically reasonable estimates. An extensive experimental evaluation shows that the proposed model offers excellent accuracy and predictive capability. A comparison against the Rint and Thevenin models further points to its superiority. With high fidelity and low mathematical complexity, this model is beneficial for various real-time battery management applications.
We study three capacity problems in the mobile telephone model, a network abstraction that models the peer-to-peer communication capabilities implemented in most commodity smartphone operating systems. The capacity of a network expresses how much sustained throughput can be maintained for a set of communication demands, and is therefore a fundamental bound on the usefulness of a network. Because of this importance, wireless network capacity has been active area of research for the last two decades. The three capacity problems that we study differ in the structure of the communication demands. The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in which a single source must deliver packets to all other nodes in the network. Finally, we turn our attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three of these problems we characterize the optimal achievable throughput for any given network, and design algorithms which asymptotically match this performance. We also study these problems in networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize their achievable throughput. Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This largely resolves an open question from previous work on the one-shot gossip problem in this model.
Observabililty is an important topic of Boolean control networks (BCNs). In this paper, we propose a new type of observability named online observability to present the sufficient and necessary condition of determining the initial states of BCNs, when their initial states cannot be reset. And we design an algorithm to decide whether a BCN has the online observability. Moreover, we prove that a BCN is identifiable iff it satisfies controllability and the online observability, which reveals the essence of identification problem of BCNs.
In multi-capacity ridesharing, multiple requests (e.g., customers, food items, parcels) with different origin and destination pairs travel in one resource. In recent years, online multi-capacity ridesharing services (i.e., where assignments are made online) like Uber-pool, foodpanda, and on-demand shuttles have become hugely popular in transportation, food delivery, logistics and other domains. This is because multi-capacity ridesharing services benefit all parties involved { the customers (due to lower costs), the drivers (due to higher revenues) and the matching platforms (due to higher revenues per vehicle/resource). Most importantly these services can also help reduce carbon emissions (due to fewer vehicles on roads). Online multi-capacity ridesharing is extremely challenging as the underlying matching graph is no longer bipartite (as in the unit-capacity case) but a tripartite graph with resources (e.g., taxis, cars), requests and request groups (combinations of requests that can travel together). The desired matching between resources and request groups is constrained by the edges between requests and request groups in this tripartite graph (i.e., a request can be part of at most one request group in the final assignment). While there have been myopic heuristic approaches employed for solving the online multi-capacity ridesharing problem, they do not provide any guarantees on the solution quality. To that end, this paper presents the first approach with bounds on the competitive ratio for online multi-capacity ridesharing (when resources rejoin the system at their initial location/depot after serving a group of requests).
Network Function Virtualization (NFV) can cost-efficiently provide network services by running different virtual network functions (VNFs) at different virtual machines (VMs) in a correct order. This can result in strong couplings between the decisions of the VMs on the placement and operations of VNFs. This paper presents a new fully decentralized online approach for optimal placement and operations of VNFs. Building on a new stochastic dual gradient method, our approach decouples the real-time decisions of VMs, asymptotically minimizes the time-average cost of NFV, and stabilizes the backlogs of network services with a cost-backlog tradeoff of $[epsilon,1/epsilon]$, for any $epsilon > 0$. Our approach can be relaxed into multiple timescales to have VNFs (re)placed at a larger timescale and hence alleviate service interruptions. While proved to preserve the asymptotic optimality, the larger timescale can slow down the optimal placement of VNFs. A learn-and-adapt strategy is further designed to speed the placement up with an improved tradeoff $[epsilon,log^2(epsilon)/{sqrt{epsilon}}]$. Numerical results show that the proposed method is able to reduce the time-average cost of NFV by 30% and reduce the queue length (or delay) by 83%, as compared to existing benchmarks.