Do you want to publish a course? Click here

Global integration of the Schrodinger equation within the wave operator formalism: The role of the effective Hamiltonian in multidimensional active spaces

53   0   0.0 ( 0 )
 Added by Arnaud Leclerc
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A global solution of the Schrodinger equation, obtained recently within the wave operator formalism for explicitly time-dependent Hamiltonians [J. Phys. A: Math. Theor. 48, 225205 (2015)], is generalized to take into account the case of multidimensional active spaces. An iterative algorithm is derived to obtain the Fourier series of the evolution operator issuing from a given multidimensional active subspace and then the effective Hamiltonian corresponding to the model space is computed and analysed as a measure of the cyclic character of the dynamics. Studies of the laser controlled dynamics of diatomic models clearly show that a multidimensional active space is required if the wavefunction escapes too far from the initial subspace. A suitable choice of the multidimensional active space, including the initial and target states, increases the cyclic character and avoids divergences occuring when one-dimensional active spaces are used. The method is also proven to be efficient in describing dissipative processes such as photodissociation.



rate research

Read More

A global solution of the Schrodinger equation for explicitly time-dependent Hamiltonians is derived by integrating the non-linear differential equation associated with the time-dependent wave operator. A fast iterative solution method is proposed in which, however, numerous integrals over time have to be evaluated. This internal work is done using a numerical integrator based on Fast Fourier Transforms (FFT). The case of a transition between two potential wells of a model molecule driven by intense laser pulses is used as an illustrative example. This application reveals some interesting features of the integration technique. Each iteration provides a global approximate solution on grid points regularly distributed over the full time propagation interval. Inside the convergence radius, the complete integration is competitive with standard algorithms, especially when high accuracy is required.
We show that the stochastic Schrodinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to include in this approach, and their treatment can be combined with a highly efficient stochastic evaluation of the trace over nuclear spin states that is required to compute experimental observables. These features are illustrated in example applications to a flavin-tryptophan radical pair of interest in avian magnetoreception, and to a problem involving spin-selective radical pair recombination along a molecular wire. In the first of these examples, the SSE is shown to be both more efficient and more widely applicable than a recent stochastic implementation of the Lindblad equation, which only provides a valid treatment of relaxation in the extreme-narrowing limit. In the second, the exact SSE results are used to assess the accuracy of a recently-proposed combination of Nakajima-Zwanzig theory for the spin relaxation and Schulten-Wolynes theory for the spin dynamics, which is applicable to radical pairs with many more nuclear spins. An appendix analyses the efficiency of trace sampling in some detail, highlighting the particular advantages of sampling with SU(N) coherent states.
We provide a systematic comparison of two numerical methods to solve the widely used nonlinear Schrodinger equation. The first one is the standard second order split-step (SS2) method based on operator splitting approach. The second one is the Hamiltonian integration method (HIM). It allows the exact conservation of the Hamiltonian at the cost of requiring the implicit time stepping. We found that numerical error for HIM method is systematically smaller than the SS2 solution for the same time step. At the same time, one can take orders of magnitude larger time steps in HIM compared with SS2 still ensuring numerical stability. In contrast, SS2 time step is limited by the numerical stability threshold.
102 - Zhiyong Zhang 2020
We present quantum algorithms, for Hamiltonians of linear combinations of local unitary operators, for Hamiltonian matrix-vector products and for preconditioning with the inverse of shifted reduced Hamiltonian operator that contributes to the diagonal matrix elements only. The algorithms implement a convergent series of approximations towards the exact solution of the full CI (configuration interaction) problem. The algorithm scales with O(m^5 ), with m the number of one-electron orbitals in the case of molecular electronic structure calculations. Full CI results can be obtained with a scaling of O(nm^5 ), with n the number of electrons and a prefactor on the order of 10 to 20. With low orders of Hamiltonian matrix-vector products, a whole repertoire of approximations widely used in modern electronic structure theory, including various orders of perturbation theory and/or truncated CI at different orders of excitations can be implemented for quantum computing for both routine and benchmark results at chemical accuracy. The lowest order matrix-vector product with preconditioning, basically the second-order perturbation theory, is expected to be a leading algorithm for demonstrating quantum supremacy for Ab Initio simulations, one of the most anticipated real world applications. The algorithm is also applicable for the hybrid variational quantum eigensolver.
Effective mass Schrodinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The effective mass Schrodinger equation is also solved for the Morse potential transforming to the constant mass Schr{o}dinger equation for a potential. One can also get solution of the effective mass Schrodinger equation starting from the constant mass Schrodinger equation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا