No Arabic abstract
We consider a large class of random geometric graphs constructed from samples $mathcal{X}_n = {X_1,X_2,ldots,X_n}$ of independent, identically distributed observations of an underlying probability measure $ u$ on a bounded domain $Dsubset mathbb{R}^d$. The popular `modularity clustering method specifies a partition $mathcal{U}_n$ of the set $mathcal{X}_n$ as the solution of an optimization problem. In this paper, under conditions on $ u$ and $D$, we derive scaling limits of the modularity clustering on random geometric graphs. Among other results, we show a geometric form of consistency: When the number of clusters is a priori bounded above, the discrete optimal partitions $mathcal{U}_n$ converge in a certain sense to a continuum partition $mathcal{U}$ of the underlying domain $D$, characterized as the solution of a type of Kelvins shape optimization problem.
In this paper, a branching process approximation for the spread of a Reed-Frost epidemic on a network with tunable clustering is derived. The approximation gives rise to expressions for the epidemic threshold and the probability of a large outbreak in the epidemic. It is investigated how these quantities varies with the clustering in the graph and it turns out for instance that, as the clustering increases, the epidemic threshold decreases. The network is modelled by a random intersection graph, in which individuals are independently members of a number of groups and two individuals are linked to each other if and only if they share at least one group.
Given a `cost functional $F$ on paths $gamma$ in a domain $Dsubsetmathbb{R}^d$, in the form $F(gamma) = int_0^1 f(gamma(t),dotgamma(t))dt$, it is of interest to approximate its minimum cost and geodesic paths. Let $X_1,ldots, X_n$ be points drawn independently from $D$ according to a distribution with a density. Form a random geometric graph on the points where $X_i$ and $X_j$ are connected when $0<|X_i - X_j|<epsilon$, and the length scale $epsilon=epsilon_n$ vanishes at a suitable rate. For a general class of functionals $F$, associated to Finsler and other distances on $D$, using a probabilistic form of Gamma convergence, we show that the minimum costs and geodesic paths, with respect to types of approximating discrete `cost functionals, built from the random geometric graph, converge almost surely in various senses to those corresponding to the continuum cost $F$, as the number of sample points diverges. In particular, the geodesic path convergence shown appears to be among the first results of its kind.
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variables on the random infinite connected component. We provide sufficient conditions for the existence of the asymptotic shape and we show that the shape is an Euclidean ball. We give some examples exhibiting the result for Bernoulli percolation and the Richardson model. For the Richardson model we further show that it converges weakly to a nonstandard branching process in the joint limit of large intensities and slow passing times.
We study an evolving spatial network in which sequentially arriving vertices are joined to existing vertices at random according to a rule that combines preference according to degree with preference according to spatial proximity. We investigate phase transitions in graph structure as the relative weighting of these two components of the attachment rule is varied. Previous work of one of the authors showed that when the geometric component is weak, the limiting degree sequence of the resulting graph coincides with that of the standard Barabasi--Albert preferential attachment model. We show that at the other extreme, in the case of a sufficiently strong geometric component, the limiting degree sequence coincides with that of a purely geometric model, the on-line nearest-neighbour graph, which is of interest in its own right and for which we prove some extensions of known results. We also show the presence of an intermediate regime, in which the behaviour differs significantly from both the on-line nearest-neighbour graph and the Barabasi--Albert model; in this regime, we obtain a stretched exponential upper bound on the degree sequence. Our results lend some mathematical support to simulation studies of Manna and Sen, while proving that the power law to stretched exponential phase transition occurs at a different point from the one conjectured by those authors.
Connections between continuous and discrete worlds tend to be elusive. One example is curvature. Even though there exist numerous nonequivalent definitions of graph curvature, none is known to converge in any limit to any traditional definition of curvature of a Riemannian manifold. Here we show that Ollivier curvature of random geometric graphs in any Riemannian manifold converges in the continuum limit to Ricci curvature of the underlying manifold, but only if the definition of Ollivier graph curvature is properly generalized to apply to mesoscopic graph neighborhoods. This result establishes the first rigorous link between a definition of curvature applicable to networks and a traditional definition of curvature of smooth spaces.