In this paper we address Approximate Agreement problem in the Mobile Byzantine faults model. Our contribution is threefold. First, we propose the the first mapping from the existing variants of Mobile Byzantine models to the Mixed-Mode faults model.This mapping further help us to prove the correctness of class MSR (Mean-Subsequence-Reduce) Approximate Agreement algorithms in the Mobile Byzantine fault model, and is of independent interest. Secondly, we prove lower bounds for solving Approximate Agreement under all existing Mobile Byzantine faults models. Interestingly, these lower bounds are different from the static bounds. Finally, we propose matching upper bounds. Our paper is the first to link the Mobile Byzantine Faults models and the Mixed-Mode Faults models, and we advocate that a similar approach can be adopted in order to prove the correctness of other classical distributed building blocks (e.g. agreement, clock synchronization, interactive consistency etc) under Mobile Byzantine Faults model.