Do you want to publish a course? Click here

A search for sub-second radio variability predicted to arise toward 3C 84 from intergalactic dispersion

124   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English
 Authors C. A. Hales




Ask ChatGPT about the research

We empirically evaluate the scheme proposed by Lieu & Duan (2013) in which the light curve of a time-steady radio source is predicted to exhibit increased variability on a characteristic timescale set by the sightlines electron column density. Application to extragalactic sources is of significant appeal as it would enable a unique and reliable probe of cosmic baryons. We examine temporal power spectra for 3C 84 observed at 1.7 GHz with the Karl G. Jansky Very Large Array and the Robert C. Byrd Green Bank Telescope. These data constrain the ratio between standard deviation and mean intensity for 3C 84 to less than 0.05% at temporal frequencies ranging between 0.1-200 Hz. This limit is 3 orders of magnitude below the variability predicted by Lieu & Duan (2013) and is in accord with theoretical arguments presented by Hirata & McQuinn (2014) rebutting electron density dependence. We identify other spectral features in the data consistent with the slow solar wind, a coronal mass ejection, and the ionosphere.



rate research

Read More

461 - S. Soldi , V. Beckmann , M. Turler 2009
We have analysed the first 15 months of Fermi/LAT data of the radio loud quasar 3C 273. Intense gamma-ray activity has been detected, showing an average flux of F(> 100 MeV) = 1.4e-6 ph/cm^2/s, with a peak at F(> 100 MeV) = 5.6e-6 ph/cm^2/s detected during a flare in September 2009. Together with the brightening of the source, a possible hardening of the gamma-ray spectrum is observed, pointing to a shift of the inverse Compton peak toward higher energies than the 1-10 MeV range in which 3C 273 inverse Compton emission is typically observed to peak. During the 15 months of observations the photon index is measured to vary between 2.4 and 3.3, with an average value of 2.78 +/- 0.03. When compared to the observations at other wavelengths, the gamma-rays show the largest flux variations and we discuss the possibility that two different components are responsible for the inverse Compton hump emission below and above the MeV peak.
Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt (delta t <~ 1 yr) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5--216 days after explosion, yielding Mdot/v_w <~ 5 x 10^-9 M_sun/yr / (100 km/s), assuming epsilon_B = 0.1 and epsilon_e = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits ranging from Mdot <~ 10^-9--10^-4 M_sun/yr, assuming a wind velocity v_w=100 km/s. We compare our radio constraints with measurements of Galactic symbiotic binaries to conclude that <~10% of thermonuclear SNe have red giant companions.
3C 84 is a nearby Active Galactic Nucleus (AGN) that is unique in that is believed that we are observing near the true jet launching region - unlike blazars. The source is active in Gamma rays and has been detected with Fermi since its launch in 2008, including being detected at TeV energies with other instruments. Due to the relative proximity of the source (z=0.018), it provides a unique opportunity to pinpoint the location of the $gamma$-ray emission by combining the Gamma ray data with very long baseline inteferometry (VLBI) data. A study using the Korean VLBI network (KVN) showed that the Gamma rays occur in both downstream jet emission and the region near where the jet is launched. Further analysis of the kinematics using Wavelet Image Segmentation and Evaluation (WISE) algorithm, which uses 2-dimensional cross-correlations to statistically derive the kinematics of high-resolution 7 mm VLBA data show that the Gamma ray emission is caused by a fast-travelling shock catching a slower moving shock and then interacting with the external medium, in behaviour reminiscent of a long duration gamma-ray burst (GRB). This could explain why such high energy flaring is seen in such low Doppler boosted sources. Finally, we show some early results from a study of the jet launching region using the Global mm-VLBI Array (GMVA). The nucleus appears to have a consistent double nuclear structure that is likely too broad to be the true jet base.
The origin of the gamma-ray emission of the blazar Mrk 421 is still a matter of debate. We used 5.5 years of unbiased observing campaign data, obtained using the FACT telescope and the Fermi LAT detector at TeV and GeV energies, the longest and densest so far, together with contemporaneous multi-wavelength observations, to characterise the variability of Mrk 421 and to constrain the underlying physical mechanisms. We studied and correlated light curves obtained by ten different instruments and found two significant results. The TeV and X-ray light curves are very well correlated with a lag of <0.6 days. The GeV and radio (15 Ghz band) light curves are widely and strongly correlated. Variations of the GeV light curve lead those in the radio. Lepto-hadronic and purely hadronic models in the frame of shock acceleration predict proton acceleration or cooling timescales that are ruled out by the short variability timescales and delays observed in Mrk 421. Instead the observations match the predictions of leptonic models.
Cosmological simulations predict that an intergalactic magnetic field (IGMF) pervades the large scale structure (LSS) of the Universe. Measuring the IGMF is important to determine its origin (i.e. primordial or otherwise). Using data from the LOFAR Two Metre Sky Survey (LoTSS), we present the Faraday rotation measure (RM) and depolarisation properties of the giant radio galaxy J1235+5317, at a redshift of $z = 0.34$ and 3.38 Mpc in size. We find a mean RM difference between the lobes of $2.5pm0.1$ rad/m$^2$ , in addition to small scale RM variations of ~0.1 rad/m$^2$ . From a catalogue of LSS filaments based on optical spectroscopic observations in the local universe, we find an excess of filaments intersecting the line of sight to only one of the lobes. Associating the entire RM difference to these LSS filaments leads to a gas density-weighted IGMF strength of ~0.3 {mu}G. However, direct comparison with cosmological simulations of the RM contribution from LSS filaments gives a low probability (~5%) for an RM contribution as large as 2.5 rad/m$^2$ , for the case of IGMF strengths of 10 to 50 nG. It is likely that variations in the RM from the Milky Way (on 11 scales) contribute significantly to the mean RM difference, and a denser RM grid is required to better constrain this contribution. In general, this work demonstrates the potential of the LOFAR telescope to probe the weak signature of the IGMF. Future studies, with thousands of sources with high accuracy RMs from LoTSS, will enable more stringent constraints on the nature of the IGMF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا