No Arabic abstract
In this article we present a pedagogical discussion of some of the optomechanical properties of a high finesse cavity loaded with ultracold atoms in laser induced synthetic gauge fields of different types. Essentially, the subject matter of this article is an amalgam of two sub-fields of atomic molecular and optical (AMO) physics namely, the cavity optomechanics with ultracold atoms and ultracold atoms in synthetic gauge field. After providing a brief introduction to either of these fields we shall show how and what properties of these trapped ultracold atoms can be studied by looking at the cavity (optomechanical or transmission) spectrum. In presence of abelian synthetic gauge field we discuss the cold-atom analogue of Shubnikov de Haas oscillation and its detection through cavity spectrum. Then, in the presence of a non-abelian synthetic gauge field (spin-orbit coupling), we see when the electromagnetic field inside the cavity is quantized, it provides a quantum optical lattice for the atoms, leading to the formation of different quantum magnetic phases. We also discuss how these phases can be explored by studying the cavity transmission spectrum.
We study the Feshbach resonance of spin-1/2 particles in the presence of a uniform synthetic non-Abelian gauge field that produces spin orbit coupling along with constant spin potentials. We develop a renormalizable quantum field theory that includes the closed channel boson which engenders the Feshbach resonance, in the presence of the gauge field. By a study of the scattering of two particles in the presence of the gauge field, we show that the Feshbach magnetic field, where the apparent low energy scattering length diverges, depends on the conserved centre of mass momentum of the two particles. For high symmetry gauge fields, such as the one which produces an isotropic Rashba spin orbit coupling, we show that the system supports two bound states over a regime of magnetic fields for a negative background scattering length and resonance width comparable to the energy scale of the spin orbit coupling. We discuss the consequences of these findings for the many body setting, and point out that a broad resonance (width larger than spin orbit coupling energy scale) is most favourable for the realization of the rashbon condensate.
We start by reviewing the concept of gauge invariance in quantum mechanics, for Abelian and Non-Ableian cases. Then we idescribe how the various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical wave function while adiabatically evolving in a parameter space. Subsequently we show how this concept is exploited to generate light induced gauge field for neutral ultra cold bosonic atoms. As an example of such light induced Abelian and Non Abelian gauge field for ultra cold atoms we disucss ultra cold atoms in a rotating trap and creation of synthetic spin orbit coupling for ultra cold atomic systems using Raman lasers.
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb lattice model, without the need of additional laser fields. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams. We finally suggest several experiments to observe the properties of the Dirac field in the setup.
The Landau levels of cold atomic gases in non-Abelian gauge fields are analyzed. In particular we identify effects on the energy spectrum and density distribution which are purely due to the non-Abelian character of the fields. We investigate in detail non-Abelian generalizations of both the Landau and the symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric gauges may be generated by means of realistically feasible lasers in a tripod scheme.
Motivated by the possibility of creating non-Abelian fields using cold atoms in optical lattices, we explore the richness and complexity of non-interacting two-dimensional electron gases (2DEGs) in a lattice, subjected to such fields. In the continuum limit, a non-Abelian system characterized by a two-component magnetic flux describes a harmonic oscillator existing in two different charge states (mimicking a particle-hole pair) where the coupling between the states is determined by the non-Abelian parameter, namely the difference between the two components of the magnetic flux. A key feature of the non-Abelian system is a splitting of the Landau energy levels, which broaden into bands, as the spectrum depends explicitly on the transverse momentum. These Landau bands result in a coarse-grained moth, a continuum version of the generalized Hofstadter butterfly. Furthermore, the bands overlap, leading to effective relativistic effects. Importantly, similar features also characterize the corresponding two-dimensional lattice problem when at least one of the components of the magnetic flux is an irrational number. The lattice system with two competing magnetic fluxes penetrating the unit cell provides a rich environment in which to study localization phenomena. Some unique aspects of the transport properties of the non-Abelian system are the possibility of inducing localization by varying the quasimomentum, and the absence of localization of certain zero-energy states exhibiting a linear energy-momentum relation. Furthermore, non-Abelian systems provide an interesting localization scenario where the localization transition is accompanied by a transition from relativistic to non-relativistic theory.