Do you want to publish a course? Click here

An X-ray and Radio Study of the Varying Expansion Velocities in Tychos Supernova Remnant

155   0   0.0 ( 0 )
 Added by Brian Williams
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present newly obtained X-ray and radio observations of Tychos supernova remnant using {it Chandra} and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 year in the X-rays and 30 year in the radio. The remnants large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. We find, consistent with earlier measurements, a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is $sim 23$ towards the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.



rate research

Read More

162 - Satoru Katsuda 2010
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tychos supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.20 yr^{-1} (expansion index m=0.33, where R = t^m) to 0.40 yr^{-1} (m=0.65) with azimuthal angle in 2000-2007 measurements, and 0.14 yr^{-1} (m=0.26) to 0.40 yr^{-1} (m=0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of ~0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.21-0.31 yr^{-1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of <~0.2 cm^{-3}.
We show that the expansion of ejecta in Tychos supernova remnant (SNR) is consistent with a spherically symmetric shell, based on Suzaku measurements of the Doppler broadened X-ray emission lines. All the strong K_alpha line emission show broader widths at the center than at the rim, while the centroid energies are constant across the remnant (except for Ca). This is the pattern expected for Doppler broadening due to expansion of the SNR ejecta in a spherical shell. To determine the expansion velocities of the ejecta, we applied a model for each emission line feature having two Gaussian components separately representing red- and blue-shifted gas, and inferred the Doppler velocity difference between these two components directly from the fitted centroid energy difference. Taking into account the effect of projecting a three-dimensional shell to the plane of the detector, we derived average spherical expansion velocities independently for the K_alpha emission of Si, S, Ar, and Fe, and K_beta of Si. We found that the expansion velocities of Si, S, and Ar ejecta of 4700+/-100 km/s are distinctly higher than that obtained from Fe K_alpha emission, 4000+/-300 km/s, which is consistent with segregation of the Fe in the inner ejecta. Combining the observed ejecta velocities with the ejecta proper-motion measurements by Chandra, we derived a distance to the Tychos SNR of 4+/-1 kpc.
We present the first three-dimensional measurements of the velocity of various ejecta knots in Tychos supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12-year baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 tufts of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line of sight velocity, we use two different methods: a non-equilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the red or blue shift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s$^{-1}$, with a mean of 4430 km s$^{-1}$. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s$^{-1}$. Some Type Ia supernova explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and discuss our findings in light of various explosion models, favoring those delayed detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnants evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.
The synchrotron X-ray stripes discovered in Tychos supernova remnant (SNR) have been attracting attention since they may be evidence for proton acceleration up to PeV. We analyzed Chandra data taken in 2003, 2007, 2009, and 2015 for imaging and spectroscopy of the stripes in the southwestern region of the SNR. Comparing images obtained at different epochs, we find that time variability of synchrotron X-rays is not limited to two structures previously reported but is more common in the region. Spectral analysis of nine bright stripes reveals not only their time variabilities but also a strong anti-correlation between the surface brightness and photon indices. The spectra of the nine stripes have photon indices of Gamma = 2.1--2.6 and are significantly harder than those of the outer rim of the SNR in the same region with Gamma = 2.7--2.9. Based on these findings, we indicate that the magnetic field is substantially amplified, and suggest that particle acceleration through a stochastic process may be at work in the stripes.
Analyzing Chandra data of Tychos supernova remnant (SNR) taken in 2000, 2003, 2007, 2009, and 2015, we search for time variable features of synchrotron X-rays in the southwestern part of the SNR, where stripe structures of hard X-ray emission were previous found. By comparing X-ray images obtained at each epoch, we discover a knot-like structure in the northernmost part of the stripe region became brighter particularly in 2015. We also find a bright filamentary structure gradually became fainter and narrower as it moved outward. Our spectral analysis reveal that not only the nonthermal X-ray flux but also the photon indices of the knot-like structure change from year to year. During the period from 2000 to 2015, the small knot shows brightening of $sim 70%$ and hardening of $Delta Gamma sim 0.45$. The time variability can be explained if the magnetic field is amplified to $sim 100~mathrm{mu G}$ and/or if magnetic turbulence significantly changes with time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا