Do you want to publish a course? Click here

Evidence for neutral-current diffractive neutral pion production from hydrogen in neutrino interactions on hydrocarbon

122   0   0.0 ( 0 )
 Added by Jeremy Wolcott
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current neutral pion production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26 +- 0.02 (stat) +- 0.08 (sys) x 10^{-39} cm^{2}. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive neutral pion production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino oscillation experiments searching for muon neutrino to electron neutrino oscillations.



rate research

Read More

The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.
The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 pm 0.5(stat.) pm 0.5 (sys.)) x 10^(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the neutral pion momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 pm 0.4) x 10^(-2).
We study neutrino-induced charged-current (CC) $pi^0$ production on carbon nuclei using events with fully imaged final-state proton-$pi^0$ systems. Novel use of final-state correlations based on transverse kinematic imbalance enable the first measurements of the struck nucleons Fermi motion, of the intranuclear momentum transfer (IMT) dynamics, and of the final-state hadronic momentum configuration in neutrino pion production. Event distributions are presented for i) the momenta of neutrino-struck neutrons below the Fermi surface, ii) the direction of missing transverse momentum characterizing the strength of IMT, and iii) proton-pion momentum imbalance with respect to the lepton scattering plane. The observed Fermi motion and IMT strength are compared to the previous MINERvA measurement of neutrino CC quasielastic-like production. The measured shapes and absolute rates of these distributions, as well as the cross-section asymmetries show tensions with predictions from current neutrino generator models.
160 - T. Le , J.L. Palomino , L. Aliaga 2015
Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $bar{ u}_e$ appearance oscillation experiments. The differential cross sections for $pi^0$ momentum and production angle, for events with a single observed $pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $pi^0$ kinematics for this process.
In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutrino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا